Yucheng Hu , Yuhong Lin , Jiawen Yang , Shan Wang , Li Gao , Yan Bi , Yanlin Wang
{"title":"Mitochondrial dysfunction and oxidative stress in selective fetal growth restriction","authors":"Yucheng Hu , Yuhong Lin , Jiawen Yang , Shan Wang , Li Gao , Yan Bi , Yanlin Wang","doi":"10.1016/j.placenta.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Placental dysfunction is the primary cause of selective fetal growth restriction (sFGR), and the specific role of mitochondria remains unclear. This study aims to elucidate mitochondrial functional defects in sFGR placentas and explore the roles of mitochondrial genomic and epigenetic alterations in its pathogenesis.</p></div><div><h3>Methods</h3><p>The placental villi of MCDA twins with sFGR were collected and the morphology and number of mitochondria were observed by transmission electron microscopy. Meanwhile, the levels of reactive oxygen species (ROS), ATP and oxidative damage markers were assessed. Mitochondrial DNA (mtDNA) copy number detection, targeted sequencing and methylation sequencing were performed. The expression of placental cytochrome c oxidase subunit I (COX I) and mitochondrial long non-coding RNAs (lncRNAs) were evaluated by Western blotting and qPCR.</p></div><div><h3>Results</h3><p>Compared with placentae from normal fetuses, pronounced mitochondrial damage within cytotrophoblast was revealed in sFGR placentae, alongside augmented mitochondrial number in syncytiotrophoblast. Enhanced oxidative stress in these placentae was evidenced by elevated markers of oxidative damage, accompanied by increased ROS production and diminished ATP generation. In sFGR placentae, a notable rise in mitochondrial copy number and one heterozygous mutation in the <em>MT-RNR2</em> gene were observed, along with decreased COX Ⅰ levels, increased lncND5, lncND6, lncCyt b, and MDL1 synthesis, and decreased RMRP synthesis.</p></div><div><h3>Discussion</h3><p>Findings collectively confirmed an exacerbation of oxidative stress within sFGR placentae, coinciding with mitochondrial dysfunction, compromised energy production, and ultimately the failure of compensatory mechanisms to restore energy balance, which may result from mutations in the mitochondrial genome and abnormal expression of epigenetic regulatory genes.</p></div>","PeriodicalId":20203,"journal":{"name":"Placenta","volume":"156 ","pages":"Pages 46-54"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Placenta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143400424006490","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Placental dysfunction is the primary cause of selective fetal growth restriction (sFGR), and the specific role of mitochondria remains unclear. This study aims to elucidate mitochondrial functional defects in sFGR placentas and explore the roles of mitochondrial genomic and epigenetic alterations in its pathogenesis.
Methods
The placental villi of MCDA twins with sFGR were collected and the morphology and number of mitochondria were observed by transmission electron microscopy. Meanwhile, the levels of reactive oxygen species (ROS), ATP and oxidative damage markers were assessed. Mitochondrial DNA (mtDNA) copy number detection, targeted sequencing and methylation sequencing were performed. The expression of placental cytochrome c oxidase subunit I (COX I) and mitochondrial long non-coding RNAs (lncRNAs) were evaluated by Western blotting and qPCR.
Results
Compared with placentae from normal fetuses, pronounced mitochondrial damage within cytotrophoblast was revealed in sFGR placentae, alongside augmented mitochondrial number in syncytiotrophoblast. Enhanced oxidative stress in these placentae was evidenced by elevated markers of oxidative damage, accompanied by increased ROS production and diminished ATP generation. In sFGR placentae, a notable rise in mitochondrial copy number and one heterozygous mutation in the MT-RNR2 gene were observed, along with decreased COX Ⅰ levels, increased lncND5, lncND6, lncCyt b, and MDL1 synthesis, and decreased RMRP synthesis.
Discussion
Findings collectively confirmed an exacerbation of oxidative stress within sFGR placentae, coinciding with mitochondrial dysfunction, compromised energy production, and ultimately the failure of compensatory mechanisms to restore energy balance, which may result from mutations in the mitochondrial genome and abnormal expression of epigenetic regulatory genes.
期刊介绍:
Placenta publishes high-quality original articles and invited topical reviews on all aspects of human and animal placentation, and the interactions between the mother, the placenta and fetal development. Topics covered include evolution, development, genetics and epigenetics, stem cells, metabolism, transport, immunology, pathology, pharmacology, cell and molecular biology, and developmental programming. The Editors welcome studies on implantation and the endometrium, comparative placentation, the uterine and umbilical circulations, the relationship between fetal and placental development, clinical aspects of altered placental development or function, the placental membranes, the influence of paternal factors on placental development or function, and the assessment of biomarkers of placental disorders.