Lorenzo Baldi , Bernard Mourrain , Adam Parusiński
{"title":"On Łojasiewicz inequalities and the effective Putinar's Positivstellensatz","authors":"Lorenzo Baldi , Bernard Mourrain , Adam Parusiński","doi":"10.1016/j.jalgebra.2024.08.022","DOIUrl":null,"url":null,"abstract":"<div><p>The representation of positive polynomials on a semi-algebraic set in terms of sums of squares is a central question in real algebraic geometry, which the Positivstellensatz answers. In this paper, we study the effective Putinar's Positivestellensatz on a compact basic semi-algebraic set <em>S</em> and provide a new proof and new improved bounds on the degree of the representation of positive polynomials. These new bounds involve a parameter <em>ε</em> measuring the non-vanishing of the positive function, the constant <span><math><mi>c</mi></math></span> and exponent <em>L</em> of a Łojasiewicz inequality for the semi-algebraic distance function associated to the inequalities <span><math><mi>g</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></math></span> defining <em>S</em>. They are polynomial in <span><math><mi>c</mi></math></span> and <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> with an exponent depending only on <em>L</em>. We analyse in details the Łojasiewicz inequality when the defining inequalities <strong>g</strong> satisfy the Constraint Qualification Condition. We show that, in this case, the Łojasiewicz exponent <em>L</em> is 1 and we relate the Łojasiewicz constant <span><math><mi>c</mi></math></span> with the distance of <strong>g</strong> to the set of singular systems.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004782","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The representation of positive polynomials on a semi-algebraic set in terms of sums of squares is a central question in real algebraic geometry, which the Positivstellensatz answers. In this paper, we study the effective Putinar's Positivestellensatz on a compact basic semi-algebraic set S and provide a new proof and new improved bounds on the degree of the representation of positive polynomials. These new bounds involve a parameter ε measuring the non-vanishing of the positive function, the constant and exponent L of a Łojasiewicz inequality for the semi-algebraic distance function associated to the inequalities defining S. They are polynomial in and with an exponent depending only on L. We analyse in details the Łojasiewicz inequality when the defining inequalities g satisfy the Constraint Qualification Condition. We show that, in this case, the Łojasiewicz exponent L is 1 and we relate the Łojasiewicz constant with the distance of g to the set of singular systems.
正多项式在半代数集合上用平方和表示是实代数几何中的一个核心问题,而正多边形定理(Positivstellensatz)回答了这个问题。在本文中,我们研究了紧凑基本半代数集 S 上有效的普提纳正多项式定理,并提供了一个新的证明和关于正多项式表示度的新改进界值。这些新边界涉及衡量正多边形函数不范化的参数 ε、常数 c 和与定义 S 的不等式 g=(g1,...gr) 相关的半代数距离函数的 Łojasiewicz 不等式的指数 L,它们是 c 和 ε-1 的多项式,指数只取决于 L。我们证明,在这种情况下,Łojasiewicz 指数 L 为 1,并且我们将 Łojasiewicz 常量 c 与 g 到奇异系统集合的距离联系起来。
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.