On Łojasiewicz inequalities and the effective Putinar's Positivstellensatz

IF 0.8 2区 数学 Q2 MATHEMATICS
Lorenzo Baldi , Bernard Mourrain , Adam Parusiński
{"title":"On Łojasiewicz inequalities and the effective Putinar's Positivstellensatz","authors":"Lorenzo Baldi ,&nbsp;Bernard Mourrain ,&nbsp;Adam Parusiński","doi":"10.1016/j.jalgebra.2024.08.022","DOIUrl":null,"url":null,"abstract":"<div><p>The representation of positive polynomials on a semi-algebraic set in terms of sums of squares is a central question in real algebraic geometry, which the Positivstellensatz answers. In this paper, we study the effective Putinar's Positivestellensatz on a compact basic semi-algebraic set <em>S</em> and provide a new proof and new improved bounds on the degree of the representation of positive polynomials. These new bounds involve a parameter <em>ε</em> measuring the non-vanishing of the positive function, the constant <span><math><mi>c</mi></math></span> and exponent <em>L</em> of a Łojasiewicz inequality for the semi-algebraic distance function associated to the inequalities <span><math><mi>g</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></math></span> defining <em>S</em>. They are polynomial in <span><math><mi>c</mi></math></span> and <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> with an exponent depending only on <em>L</em>. We analyse in details the Łojasiewicz inequality when the defining inequalities <strong>g</strong> satisfy the Constraint Qualification Condition. We show that, in this case, the Łojasiewicz exponent <em>L</em> is 1 and we relate the Łojasiewicz constant <span><math><mi>c</mi></math></span> with the distance of <strong>g</strong> to the set of singular systems.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004782","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The representation of positive polynomials on a semi-algebraic set in terms of sums of squares is a central question in real algebraic geometry, which the Positivstellensatz answers. In this paper, we study the effective Putinar's Positivestellensatz on a compact basic semi-algebraic set S and provide a new proof and new improved bounds on the degree of the representation of positive polynomials. These new bounds involve a parameter ε measuring the non-vanishing of the positive function, the constant c and exponent L of a Łojasiewicz inequality for the semi-algebraic distance function associated to the inequalities g=(g1,,gr) defining S. They are polynomial in c and ε1 with an exponent depending only on L. We analyse in details the Łojasiewicz inequality when the defining inequalities g satisfy the Constraint Qualification Condition. We show that, in this case, the Łojasiewicz exponent L is 1 and we relate the Łojasiewicz constant c with the distance of g to the set of singular systems.

论罗亚谢维兹不等式和有效普提纳尔正定定理
正多项式在半代数集合上用平方和表示是实代数几何中的一个核心问题,而正多边形定理(Positivstellensatz)回答了这个问题。在本文中,我们研究了紧凑基本半代数集 S 上有效的普提纳正多项式定理,并提供了一个新的证明和关于正多项式表示度的新改进界值。这些新边界涉及衡量正多边形函数不范化的参数 ε、常数 c 和与定义 S 的不等式 g=(g1,...gr) 相关的半代数距离函数的 Łojasiewicz 不等式的指数 L,它们是 c 和 ε-1 的多项式,指数只取决于 L。我们证明,在这种情况下,Łojasiewicz 指数 L 为 1,并且我们将 Łojasiewicz 常量 c 与 g 到奇异系统集合的距离联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信