Arsalan Ahmad , Shiming Han , Adnan Sami , Muhammad Zeshan Haider , Qurban Ali , Muhammad Shafiq , Daoud Ali , Javaid Iqbal , Muhammad Aamir Manzoor , Irfan Ali Sabir , Yuexia Wang
{"title":"Genome-wide identification of Cytochrome P450 gene in Fall Armyworm (Spodoptera frugiperda) in response to insecticide resistance","authors":"Arsalan Ahmad , Shiming Han , Adnan Sami , Muhammad Zeshan Haider , Qurban Ali , Muhammad Shafiq , Daoud Ali , Javaid Iqbal , Muhammad Aamir Manzoor , Irfan Ali Sabir , Yuexia Wang","doi":"10.1016/j.stress.2024.100579","DOIUrl":null,"url":null,"abstract":"<div><p>The fall armyworm (FAW), <em>Spodoptera frugiperda</em>, poses a significant threat to maize, sorghum, and cotton crops, leading to substantial economic losses of up to 80 % in severe infestations. Despite its economic impact, the characterization of <em>Cytochrome P450</em> (<em>Cyp</em>) genes, pivotal in regulatory metabolic processes, remains unexplored. This study identifies and investigates 33 <em>Cyp</em>-genes involved in critical metabolic pathways. These include fatty acid metabolism, resistance mechanisms, hormone regulation affecting moulting and developmental stages, response to phytotoxins, and detoxification of insecticides.Utilizing in-silico gene expression profiling, we pinpoint key <em>Cyp</em>-genes—<em>Cyp306a1-like, Cyp9e2-like, Cyp6l1-like, Cyp12b1,</em> and <em>Cyp6B2-like</em>—playing critical roles in conferring resistance against four commonly used insecticides: emamectin benzoate, tetrazolium, cyantraniliprole, and spinetoram. Our findings reveal that these identified genes are essential in detoxifying chemical treatments, thus contributing to the development of resistance in fall armyworm populations. In this investigation, key genes such as <em>Cyp306a1-like, Cyp9e2-like</em>, and <em>Cyp6l1-like</em> emerge as important regulatory genes. These genes play a role in resistance and detoxification when exposed to chemical stress. This in-silico study provides insights into the genetic mechanisms underlying resistance and regulatory genes in the fall armyworm, shedding light on potential targets for controlling the notorious agricultural pest. However, further comprehensive investigations are needed to elucidate the intricate resistance mechanisms governed by these key genes, paving the way for developing novel and effective strategies for fall armyworm management in agricultural ecosystems.</p></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100579"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667064X2400232X/pdfft?md5=ec92d15f5c308c08fab80985cb744a93&pid=1-s2.0-S2667064X2400232X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X2400232X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, poses a significant threat to maize, sorghum, and cotton crops, leading to substantial economic losses of up to 80 % in severe infestations. Despite its economic impact, the characterization of Cytochrome P450 (Cyp) genes, pivotal in regulatory metabolic processes, remains unexplored. This study identifies and investigates 33 Cyp-genes involved in critical metabolic pathways. These include fatty acid metabolism, resistance mechanisms, hormone regulation affecting moulting and developmental stages, response to phytotoxins, and detoxification of insecticides.Utilizing in-silico gene expression profiling, we pinpoint key Cyp-genes—Cyp306a1-like, Cyp9e2-like, Cyp6l1-like, Cyp12b1, and Cyp6B2-like—playing critical roles in conferring resistance against four commonly used insecticides: emamectin benzoate, tetrazolium, cyantraniliprole, and spinetoram. Our findings reveal that these identified genes are essential in detoxifying chemical treatments, thus contributing to the development of resistance in fall armyworm populations. In this investigation, key genes such as Cyp306a1-like, Cyp9e2-like, and Cyp6l1-like emerge as important regulatory genes. These genes play a role in resistance and detoxification when exposed to chemical stress. This in-silico study provides insights into the genetic mechanisms underlying resistance and regulatory genes in the fall armyworm, shedding light on potential targets for controlling the notorious agricultural pest. However, further comprehensive investigations are needed to elucidate the intricate resistance mechanisms governed by these key genes, paving the way for developing novel and effective strategies for fall armyworm management in agricultural ecosystems.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.