Mingjie Liu , Tengfei Liu , Junling Xu , Lianyi Shao , Xiaoyan Shi , Zhipeng Sun
{"title":"Metal-organic frameworks based solid-state electrolytes for lithium metal batteries: Modifications and future prospects","authors":"Mingjie Liu , Tengfei Liu , Junling Xu , Lianyi Shao , Xiaoyan Shi , Zhipeng Sun","doi":"10.1016/j.nxener.2024.100191","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic frameworks (MOFs) represent a cutting-edge category of porous crystalline organic-inorganic hybrids that have attracted significant interest in the realm of energy storage and conversion. MOFs offer several advantages, including ordered channels, high specific surface area, precisely controllable structures, high functionality, and desirable physicochemical characteristics, which position them as promising candidates for solid-state electrolytes (SSEs). This review systematically explores recent efforts in the development of MOF-based SSEs for solid-state lithium metal batteries. We categorize these advancements into three key systems based on the functionalities of MOFs: (1) incorporation of guest molecules into MOFs, (2) modification of MOFs, and (3) MOFs-based composite in SSEs. We discuss the advantages and potential challenges associated with MOFs in these applications, and propose key design strategies and emerging trends. This review aims to offer innovative insights and practical guidance for the development of MOF-based electrolytes.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100191"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000966/pdfft?md5=50809a800f0fe5c3da61c6e5c6062a39&pid=1-s2.0-S2949821X24000966-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-organic frameworks (MOFs) represent a cutting-edge category of porous crystalline organic-inorganic hybrids that have attracted significant interest in the realm of energy storage and conversion. MOFs offer several advantages, including ordered channels, high specific surface area, precisely controllable structures, high functionality, and desirable physicochemical characteristics, which position them as promising candidates for solid-state electrolytes (SSEs). This review systematically explores recent efforts in the development of MOF-based SSEs for solid-state lithium metal batteries. We categorize these advancements into three key systems based on the functionalities of MOFs: (1) incorporation of guest molecules into MOFs, (2) modification of MOFs, and (3) MOFs-based composite in SSEs. We discuss the advantages and potential challenges associated with MOFs in these applications, and propose key design strategies and emerging trends. This review aims to offer innovative insights and practical guidance for the development of MOF-based electrolytes.