Kinetics of monolayer MoS2-encapsulated nanobubbles on hexagonal boron nitride substrates

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Zihan Liu, Yingchun Jiang, Dingli Wang, Junpeng Lai, Huimin Zhou, Jia Deng, Changhong Ke
{"title":"Kinetics of monolayer MoS2-encapsulated nanobubbles on hexagonal boron nitride substrates","authors":"Zihan Liu, Yingchun Jiang, Dingli Wang, Junpeng Lai, Huimin Zhou, Jia Deng, Changhong Ke","doi":"10.1063/5.0224361","DOIUrl":null,"url":null,"abstract":"Understanding the kinetics of nanobubbles encapsulated by ultrathin two-dimensional (2D) layered van der Waals crystal membranes on atomically flat substrates is important to the applications of 2D materials and the pursuit of 2D nanobubble technologies. Here, we investigate the controlled motion of monolayer molybdenum disulfide (MoS2)-encapsulated nanobubbles on flat hexagonal boron nitride substrates using atomic force microscopy (AFM). Our study reveals a distinct transition from standstill bubble deformations to stable, stepwise bubble translations on flat substrates. The membrane tension-dominated 2D nanobubble behaves like an elastic soft body in its collision interaction with the AFM tip. This delicate motion-control technique enables neighboring 2D nanobubbles to move closer and eventually coalesce into larger nanobubbles. These findings pave the way for high-precision manipulation of nanobubbles and facilitate the exploration of their emerging applications.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0224361","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the kinetics of nanobubbles encapsulated by ultrathin two-dimensional (2D) layered van der Waals crystal membranes on atomically flat substrates is important to the applications of 2D materials and the pursuit of 2D nanobubble technologies. Here, we investigate the controlled motion of monolayer molybdenum disulfide (MoS2)-encapsulated nanobubbles on flat hexagonal boron nitride substrates using atomic force microscopy (AFM). Our study reveals a distinct transition from standstill bubble deformations to stable, stepwise bubble translations on flat substrates. The membrane tension-dominated 2D nanobubble behaves like an elastic soft body in its collision interaction with the AFM tip. This delicate motion-control technique enables neighboring 2D nanobubbles to move closer and eventually coalesce into larger nanobubbles. These findings pave the way for high-precision manipulation of nanobubbles and facilitate the exploration of their emerging applications.
六方氮化硼基底上的单层 MoS2- 封装纳米气泡动力学
了解原子平面基底上由超薄二维(2D)层状范德华晶体膜封装的纳米气泡的动力学,对于二维材料的应用和二维纳米气泡技术的研究非常重要。在这里,我们利用原子力显微镜(AFM)研究了单层二硫化钼(MoS2)封装纳米气泡在平面六角氮化硼基底上的可控运动。我们的研究揭示了平坦基底上气泡从静止变形到稳定、逐步平移的明显过渡。以膜张力为主的二维纳米气泡在与原子力显微镜针尖的碰撞作用中表现得像一个弹性软体。这种微妙的运动控制技术能使相邻的二维纳米气泡靠得更近,并最终凝聚成更大的纳米气泡。这些发现为高精度操纵纳米气泡铺平了道路,并促进了对其新兴应用的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信