Effect of magnesium doping on NiO hole injection layer in quantum dot light-emitting diodes

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nayoon Lee, Van Khoe Vo, Hyo-Jun Lim, Sunwoo Jin, Thi Huong Thao Dang, Heewon Jang, Dayoung Choi, Joon-Hyung Lee, Byoung-Seong Jeong, Young-Woo Heo
{"title":"Effect of magnesium doping on NiO hole injection layer in quantum dot light-emitting diodes","authors":"Nayoon Lee, Van Khoe Vo, Hyo-Jun Lim, Sunwoo Jin, Thi Huong Thao Dang, Heewon Jang, Dayoung Choi, Joon-Hyung Lee, Byoung-Seong Jeong, Young-Woo Heo","doi":"10.1515/nanoph-2024-0239","DOIUrl":null,"url":null,"abstract":"This study reports on the fabrication of quantum dot light-emitting diodes (QLEDs) with an ITO/Ni<jats:sub>1−<jats:italic>x</jats:italic> </jats:sub>Mg<jats:sub> <jats:italic>x</jats:italic> </jats:sub>O/SAM/TFB/QDs/ZnMgO/Al structure and investigates the effects of various Mg doping concentrations in NiO on device performance. By doping Mg into the inorganic hole-injection layer NiO (Ni<jats:sub>1−<jats:italic>x</jats:italic> </jats:sub>Mg<jats:sub> <jats:italic>x</jats:italic> </jats:sub>O), we improved the band alignment with the hole-injection layer through band tuning, which enhanced charge balance. Optimal Mg doping ratios, particularly a Ni<jats:sub>0.9</jats:sub>Mg<jats:sub>0.1</jats:sub>O composition, have demonstrated superior device functionality, underscoring the need for fine-tuned doping levels. Further enhancements were achieved through surface treatments of Ni<jats:sub>0.9</jats:sub>Mg<jats:sub>0.1</jats:sub>O with UV-Ozone (UVO) and thermal annealing (TA) of the ZnMgO electron transport layer. Consequently, by optimizing Mg-doped NiO in QLED devices, we achieved a maximum external quantum efficiency of 8.38 %, a brightness of 66,677 cd/m<jats:sup>2</jats:sup>, and a current efficiency of 35.31 cd/A, indicating improved performance. The integration of Mg-doped NiO into the QLED structure resulted in a device with superior charge balance and overall performance, which is a promising direction for future QLED display technologies.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"49 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0239","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports on the fabrication of quantum dot light-emitting diodes (QLEDs) with an ITO/Ni1−x Mg x O/SAM/TFB/QDs/ZnMgO/Al structure and investigates the effects of various Mg doping concentrations in NiO on device performance. By doping Mg into the inorganic hole-injection layer NiO (Ni1−x Mg x O), we improved the band alignment with the hole-injection layer through band tuning, which enhanced charge balance. Optimal Mg doping ratios, particularly a Ni0.9Mg0.1O composition, have demonstrated superior device functionality, underscoring the need for fine-tuned doping levels. Further enhancements were achieved through surface treatments of Ni0.9Mg0.1O with UV-Ozone (UVO) and thermal annealing (TA) of the ZnMgO electron transport layer. Consequently, by optimizing Mg-doped NiO in QLED devices, we achieved a maximum external quantum efficiency of 8.38 %, a brightness of 66,677 cd/m2, and a current efficiency of 35.31 cd/A, indicating improved performance. The integration of Mg-doped NiO into the QLED structure resulted in a device with superior charge balance and overall performance, which is a promising direction for future QLED display technologies.
量子点发光二极管中镁掺杂对氧化镍空穴注入层的影响
本研究报告了采用 ITO/Ni1-x Mg x O/SAM/TFB/QDs/ZnMgO/Al 结构制造量子点发光二极管(QLED)的情况,并探讨了在 NiO 中掺入不同浓度的镁对器件性能的影响。通过在无机空穴注入层 NiO(Ni1-x Mg x O)中掺杂镁,我们通过带调谐改善了与空穴注入层的带排列,从而增强了电荷平衡。最佳的镁掺杂比,尤其是 Ni0.9Mg0.1O 成分,已显示出卓越的器件功能,突出了微调掺杂水平的必要性。通过使用紫外臭氧(UVO)对 Ni0.9Mg0.1O 进行表面处理,以及对 ZnMgO 电子传输层进行热退火(TA)处理,进一步提高了掺杂水平。因此,通过优化 QLED 器件中的掺镁氧化镍,我们实现了 8.38 % 的最大外部量子效率、66677 cd/m2 的亮度和 35.31 cd/A 的电流效率,表明性能得到了改善。将掺镁氧化镍集成到 QLED 结构中,使器件具有优异的电荷平衡和整体性能,这是未来 QLED 显示技术的一个很有前途的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信