Deep learning as a highly efficient tool for digital signal processing design

IF 20.6 Q1 OPTICS
Andrey Pryamikov
{"title":"Deep learning as a highly efficient tool for digital signal processing design","authors":"Andrey Pryamikov","doi":"10.1038/s41377-024-01599-8","DOIUrl":null,"url":null,"abstract":"<p>The backpropagation algorithm, the most widely used algorithm for training artificial neural networks, can be effectively applied to the development of digital signal processing schemes in the optical fiber transmission systems. Digital signal processing as a deep learning framework can lead to a new highly efficient paradigm for cost-effective digital signal processing designes with low complexity.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"40 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01599-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The backpropagation algorithm, the most widely used algorithm for training artificial neural networks, can be effectively applied to the development of digital signal processing schemes in the optical fiber transmission systems. Digital signal processing as a deep learning framework can lead to a new highly efficient paradigm for cost-effective digital signal processing designes with low complexity.

Abstract Image

深度学习是数字信号处理设计的高效工具
反向传播算法是人工神经网络训练中应用最广泛的算法,可有效地应用于光纤传输系统中数字信号处理方案的开发。数字信号处理作为一种深度学习框架,可以为低复杂度、高性价比的数字信号处理设计带来一种新的高效范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信