Three-dimensional chromatin mapping of sensory neurons reveals that promoter-enhancer looping is required for axonal regeneration.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ilaria Palmisano,Tong Liu,Wei Gao,Luming Zhou,Matthias Merkenschlager,Franziska Mueller,Jessica Chadwick,Rebecca Toscano Rivalta,Guiping Kong,James W D King,Ediem Al-Jibury,Yuyang Yan,Alessandro Carlino,Bryce Collison,Eleonora De Vitis,Sree Gongala,Francesco De Virgiliis,Zheng Wang,Simone Di Giovanni
{"title":"Three-dimensional chromatin mapping of sensory neurons reveals that promoter-enhancer looping is required for axonal regeneration.","authors":"Ilaria Palmisano,Tong Liu,Wei Gao,Luming Zhou,Matthias Merkenschlager,Franziska Mueller,Jessica Chadwick,Rebecca Toscano Rivalta,Guiping Kong,James W D King,Ediem Al-Jibury,Yuyang Yan,Alessandro Carlino,Bryce Collison,Eleonora De Vitis,Sree Gongala,Francesco De Virgiliis,Zheng Wang,Simone Di Giovanni","doi":"10.1073/pnas.2402518121","DOIUrl":null,"url":null,"abstract":"The in vivo three-dimensional genomic architecture of adult mature neurons at homeostasis and after medically relevant perturbations such as axonal injury remains elusive. Here, we address this knowledge gap by mapping the three-dimensional chromatin architecture and gene expression program at homeostasis and after sciatic nerve injury in wild-type and cohesin-deficient mouse sensory dorsal root ganglia neurons via combinatorial Hi-C, promoter-capture Hi-C, CUT&Tag for H3K27ac and RNA-seq. We find that genes involved in axonal regeneration form long-range, complex chromatin loops, and that cohesin is required for the full induction of the regenerative transcriptional program. Importantly, loss of cohesin results in disruption of chromatin architecture and severely impaired nerve regeneration. Complex enhancer-promoter loops are also enriched in the human fetal cortical plate, where the axonal growth potential is highest, and are lost in mature adult neurons. Together, these data provide an original three-dimensional chromatin map of adult sensory neurons in vivo and demonstrate a role for cohesin-dependent long-range promoter interactions in nerve regeneration.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2402518121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The in vivo three-dimensional genomic architecture of adult mature neurons at homeostasis and after medically relevant perturbations such as axonal injury remains elusive. Here, we address this knowledge gap by mapping the three-dimensional chromatin architecture and gene expression program at homeostasis and after sciatic nerve injury in wild-type and cohesin-deficient mouse sensory dorsal root ganglia neurons via combinatorial Hi-C, promoter-capture Hi-C, CUT&Tag for H3K27ac and RNA-seq. We find that genes involved in axonal regeneration form long-range, complex chromatin loops, and that cohesin is required for the full induction of the regenerative transcriptional program. Importantly, loss of cohesin results in disruption of chromatin architecture and severely impaired nerve regeneration. Complex enhancer-promoter loops are also enriched in the human fetal cortical plate, where the axonal growth potential is highest, and are lost in mature adult neurons. Together, these data provide an original three-dimensional chromatin map of adult sensory neurons in vivo and demonstrate a role for cohesin-dependent long-range promoter interactions in nerve regeneration.
感觉神经元的三维染色质图谱显示,轴突再生需要启动子-增强子循环。
成年成熟神经元在体内的三维基因组结构在平衡状态下以及在轴突损伤等医学相关扰动后仍然难以捉摸。在这里,我们通过组合 Hi-C、启动子捕获 Hi-C、CUT&Tag for H3K27ac 和 RNA-seq 等方法,绘制了野生型和凝聚素缺陷型小鼠感觉背根神经节神经元在平衡状态和坐骨神经损伤后的三维染色质结构和基因表达程序,从而填补了这一知识空白。我们发现,参与轴突再生的基因形成了长程、复杂的染色质环,而且再生转录程序的全面诱导需要凝聚素。重要的是,失去凝聚素会导致染色质结构的破坏和神经再生的严重受损。在轴突生长潜力最高的人类胎儿皮质板中,也富含复杂的增强子-启动子环路,而在成熟的成体神经元中则丧失了这种环路。这些数据共同提供了体内成年感觉神经元的原始三维染色质图谱,并证明了依赖于凝聚素的长程启动子相互作用在神经再生中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信