{"title":"The class group of a minimal model of a quotient singularity","authors":"Johannes Schmitt","doi":"10.1112/blms.13100","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> be a finite-dimensional vector space over the complex numbers and let <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>⩽</mo>\n <mo>SL</mo>\n <mo>(</mo>\n <mi>V</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G\\leqslant \\operatorname{SL}(V)$</annotation>\n </semantics></math> be a finite group. We describe the class group of a minimal model (i.e., <span></span><math>\n <semantics>\n <mi>Q</mi>\n <annotation>$\\mathbb {Q}$</annotation>\n </semantics></math>-factorial terminalization) of the linear quotient <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>/</mo>\n <mi>G</mi>\n </mrow>\n <annotation>$V/G$</annotation>\n </semantics></math>. We prove that such a class group is completely controlled by the junior elements contained in <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2777-2793"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13100","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13100","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a finite-dimensional vector space over the complex numbers and let be a finite group. We describe the class group of a minimal model (i.e., -factorial terminalization) of the linear quotient . We prove that such a class group is completely controlled by the junior elements contained in .
让 V $V$ 是复数上的有限维向量空间,让 G ⩽ SL ( V ) $G\leqslant \operatorname{SL}(V)$ 是有限群。我们将描述线性商 V / G $V/G$ 的最小模型(即 Q $\mathbb {Q}$ -因子终结)的类群。我们证明这样的类群完全由 G $G$ 中包含的初等元素控制。