Configuration spaces as commutative monoids

IF 0.8 3区 数学 Q2 MATHEMATICS
Oscar Randal-Williams
{"title":"Configuration spaces as commutative monoids","authors":"Oscar Randal-Williams","doi":"10.1112/blms.13104","DOIUrl":null,"url":null,"abstract":"<p>After one-point compactification, the collection of all unordered configuration spaces of a manifold admits a commutative multiplication by superposition of configurations. We explain a simple (derived) presentation for this commutative monoid object. Using this presentation, one can quickly deduce Knudsen's formula for the rational cohomology of configuration spaces, prove rational homological stability and understand how automorphisms of the manifold act on the cohomology of configuration spaces. Similar considerations reproduce the work of Farb–Wolfson–Wood on homological densities.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2847-2862"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13104","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13104","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

After one-point compactification, the collection of all unordered configuration spaces of a manifold admits a commutative multiplication by superposition of configurations. We explain a simple (derived) presentation for this commutative monoid object. Using this presentation, one can quickly deduce Knudsen's formula for the rational cohomology of configuration spaces, prove rational homological stability and understand how automorphisms of the manifold act on the cohomology of configuration spaces. Similar considerations reproduce the work of Farb–Wolfson–Wood on homological densities.

Abstract Image

作为交换单体的配置空间
经过一点压缩后,流形的所有无序构型空间的集合可以通过构型叠加实现交换乘法。我们解释了这一交换一元对象的简单(派生)表述。利用这一表述,我们可以快速推导出配置空间的有理同调公式,证明有理同调稳定性,并理解流形的自动态如何作用于配置空间的同调。类似的考虑再现了法布-沃尔夫森-伍德关于同调密度的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信