Ni Particle Morphology and Support Effect in the Catalytic Decomposition of Methane: Into the Design of Novel, High Yield Catalyst for Catalytic Decomposition of Methane
Jose A. Hernandez Gaitan, Xinyu Li, Kazuya Tamura, Koji Miyake, Yoshiaki Uchida, Norikazu Nishiyama
{"title":"Ni Particle Morphology and Support Effect in the Catalytic Decomposition of Methane: Into the Design of Novel, High Yield Catalyst for Catalytic Decomposition of Methane","authors":"Jose A. Hernandez Gaitan, Xinyu Li, Kazuya Tamura, Koji Miyake, Yoshiaki Uchida, Norikazu Nishiyama","doi":"10.1002/aesr.202400096","DOIUrl":null,"url":null,"abstract":"<p>Research on high-surface-area supports and synergic promoters has been made, however, there is still much room for improvement on the catalytic-particles morphology and interaction with the support. A first approach for designing nanoplate supports to improve CDM catalysts was made. Amorphous aluminosilicates nanoplates (a-AS.np) with an average particle size of 23.4 nm and an average height of 2.8 nm, and α-Ni(OH)<sub>2</sub> nanoplates (Ni.np) with an average particle size of 23.2 nm and an average thickness of 8.4 nm, were successfully synthesized, using a two-dimensional reactor in amphiphilic phases (TRAP). Nickel loaded in a-AS materials with different morphologies and promotion effects of lantana (La<sup>3+</sup>) & chromium (Cr<sup>3+</sup>) species were studied. La-Cr promoted a-AS support showed an average increase of 13% on H<sub>2</sub> yield in severe conditions due to improved crystallization of Ni particles on mesoporous support and the electron promotion of La to Ni species. Furthermore, we evaluate the Ni.np as novel morphology support for La<sup>3+</sup> & copper (Cu<sup>2+</sup>) species in the methane decomposition reaction. La-Cu Ni.np showed outstanding performance and stability, a max H<sub>2</sub> yield of 15.9% (at 700 °C), and more than 400 min of H<sub>2</sub> generation (at 550 °C) compared to its a-AS support counterparts.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"5 9","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400096","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Research on high-surface-area supports and synergic promoters has been made, however, there is still much room for improvement on the catalytic-particles morphology and interaction with the support. A first approach for designing nanoplate supports to improve CDM catalysts was made. Amorphous aluminosilicates nanoplates (a-AS.np) with an average particle size of 23.4 nm and an average height of 2.8 nm, and α-Ni(OH)2 nanoplates (Ni.np) with an average particle size of 23.2 nm and an average thickness of 8.4 nm, were successfully synthesized, using a two-dimensional reactor in amphiphilic phases (TRAP). Nickel loaded in a-AS materials with different morphologies and promotion effects of lantana (La3+) & chromium (Cr3+) species were studied. La-Cr promoted a-AS support showed an average increase of 13% on H2 yield in severe conditions due to improved crystallization of Ni particles on mesoporous support and the electron promotion of La to Ni species. Furthermore, we evaluate the Ni.np as novel morphology support for La3+ & copper (Cu2+) species in the methane decomposition reaction. La-Cu Ni.np showed outstanding performance and stability, a max H2 yield of 15.9% (at 700 °C), and more than 400 min of H2 generation (at 550 °C) compared to its a-AS support counterparts.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).