Jun Ho Lee, Hyungtaek Jeon, Jan Lötvall, Byong Seung Cho
{"title":"Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in SARS-CoV-2 and H1N1 influenza-induced acute lung injury","authors":"Jun Ho Lee, Hyungtaek Jeon, Jan Lötvall, Byong Seung Cho","doi":"10.1002/jev2.12495","DOIUrl":null,"url":null,"abstract":"<p>Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have shown anti-inflammatory potential in multiple inflammatory diseases. In the March 2022 issue of the <i>Journal of Extracellular Vesicles</i>, it was shown that EVs from human MSCs can suppress severe acute respiratory distress syndrome, coronavirus 2 (SARS-CoV-2) replication and can mitigate the production and release of infectious virions. We therefore hypothesized that MSC-EVs have an anti-viral effect in SARS-CoV-2 infection in vivo. We extended this question to ask whether also other respiratory viral infections could be treated by MSC-EVs. Adipose stem cell-derived EVs (ASC-EVs) were isolated using tangential flow filtration from conditioned media obtained from a multi-flask cell culture system. The effects of the ASC-EVs were tested in Vero E6 cells in vitro. ASC-EVs were also given i.v. to SARS-CoV-2 infected Syrian Hamsters, and H1N1 influenza virus infected mice. The ASC-EVs attenuated SARS-CoV-2 virus replication in Vero E6 cells and reduced body weight and signs of lung injury in infected Syrian hamsters. Furthermore, ASC-EVs increased the survival rate of influenza A-infected mice and attenuated signs of lung injury. In summary, this study suggests that ASC-EVs can have beneficial therapeutic effects in models of virus-infection-associated acute lung injury and may potentially be developed to treat lung injury in humans.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":15.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12495","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12495","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have shown anti-inflammatory potential in multiple inflammatory diseases. In the March 2022 issue of the Journal of Extracellular Vesicles, it was shown that EVs from human MSCs can suppress severe acute respiratory distress syndrome, coronavirus 2 (SARS-CoV-2) replication and can mitigate the production and release of infectious virions. We therefore hypothesized that MSC-EVs have an anti-viral effect in SARS-CoV-2 infection in vivo. We extended this question to ask whether also other respiratory viral infections could be treated by MSC-EVs. Adipose stem cell-derived EVs (ASC-EVs) were isolated using tangential flow filtration from conditioned media obtained from a multi-flask cell culture system. The effects of the ASC-EVs were tested in Vero E6 cells in vitro. ASC-EVs were also given i.v. to SARS-CoV-2 infected Syrian Hamsters, and H1N1 influenza virus infected mice. The ASC-EVs attenuated SARS-CoV-2 virus replication in Vero E6 cells and reduced body weight and signs of lung injury in infected Syrian hamsters. Furthermore, ASC-EVs increased the survival rate of influenza A-infected mice and attenuated signs of lung injury. In summary, this study suggests that ASC-EVs can have beneficial therapeutic effects in models of virus-infection-associated acute lung injury and may potentially be developed to treat lung injury in humans.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.