On torsion-freeness of Kähler differential sheaves

IF 0.8 3区 数学 Q2 MATHEMATICS
Nilkantha Das, Sumit Roy
{"title":"On torsion-freeness of Kähler differential sheaves","authors":"Nilkantha Das,&nbsp;Sumit Roy","doi":"10.1112/blms.13114","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a normal algebraic variety over an algebraically closed field <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>. We prove that the Kähler differential sheaf of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is torsion-free if and only if any regular section of the ideal sheaf of the first order deformation of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> inside <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <msub>\n <mo>×</mo>\n <mi>k</mi>\n </msub>\n <mi>X</mi>\n </mrow>\n <annotation>$X\\times _k X$</annotation>\n </semantics></math>, defined outside the singular locus of <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <msub>\n <mo>×</mo>\n <mi>k</mi>\n </msub>\n <mi>X</mi>\n </mrow>\n <annotation>$X \\times _k X$</annotation>\n </semantics></math>, extends regularly to the singular locus.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2982-2990"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13114","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X $X$ be a normal algebraic variety over an algebraically closed field k $k$ . We prove that the Kähler differential sheaf of X $X$ is torsion-free if and only if any regular section of the ideal sheaf of the first order deformation of X $X$ inside X × k X $X\times _k X$ , defined outside the singular locus of X × k X $X \times _k X$ , extends regularly to the singular locus.

论凯勒微分卷的无扭性
设 X $X$ 是代数闭域 k $k$ 上的正态代数簇。我们证明,当且仅当在 X × k X $X \times _k X$ 的奇异点外定义的 X × k X $X \times _k X$ 内 X $X$ 一阶变形的理想舍夫的任何正则截面正则地延伸到奇异点时,X $X$ 的凯勒微分舍夫是无扭转的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信