Rigidity of inverse problems for nonlinear elliptic equations on manifolds

IF 0.8 3区 数学 Q2 MATHEMATICS
Ali Feizmohammadi, Yavar Kian, Lauri Oksanen
{"title":"Rigidity of inverse problems for nonlinear elliptic equations on manifolds","authors":"Ali Feizmohammadi,&nbsp;Yavar Kian,&nbsp;Lauri Oksanen","doi":"10.1112/blms.13102","DOIUrl":null,"url":null,"abstract":"<p>We consider the inverse problem of determining coefficients appearing in semilinear elliptic equations stated on Riemannian manifolds with boundary given the knowledge of the associated Dirichlet-to-Neumann map. We begin with a negative answer to this problem. Owing to this obstruction, we consider a new formulation of our inverse problem in terms of a rigidity problem. Precisely, we consider cases where the Dirichlet-to-Neumann map of a semilinear equation coincides with the one of a linear equation and ask whether this implies that the equation must indeed be linear. We give a positive answer to this rigidity problem under some assumptions imposed on the Riemannian manifold and the semilinear term under consideration.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2802-2823"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13102","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the inverse problem of determining coefficients appearing in semilinear elliptic equations stated on Riemannian manifolds with boundary given the knowledge of the associated Dirichlet-to-Neumann map. We begin with a negative answer to this problem. Owing to this obstruction, we consider a new formulation of our inverse problem in terms of a rigidity problem. Precisely, we consider cases where the Dirichlet-to-Neumann map of a semilinear equation coincides with the one of a linear equation and ask whether this implies that the equation must indeed be linear. We give a positive answer to this rigidity problem under some assumptions imposed on the Riemannian manifold and the semilinear term under consideration.

流形上非线性椭圆方程反问题的刚性
我们考虑的逆问题是,在知道相关的 Dirichlet 到 Neumann 映射的情况下,如何确定有边界的黎曼流形上的半线性椭圆方程中出现的系数。我们首先给出了这个问题的否定答案。由于这一障碍,我们考虑用刚性问题对逆问题进行新的表述。确切地说,我们考虑了半线性方程的 Dirichlet 到 Neumann 映射与线性方程的 Dirichlet 到 Neumann 映射重合的情况,并询问这是否意味着方程确实必须是线性的。在对所考虑的黎曼流形和半线性项做出一些假设的情况下,我们给出了这个刚性问题的肯定答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信