The Multimodel Stacking and Ensemble Framework for Human Activity Recognition

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Abisek Dahal;Soumen Moulik
{"title":"The Multimodel Stacking and Ensemble Framework for Human Activity Recognition","authors":"Abisek Dahal;Soumen Moulik","doi":"10.1109/LSENS.2024.3451960","DOIUrl":null,"url":null,"abstract":"Human activity recognition (HAR) plays an important role in various domains, such as healthcare, elderly care, sports, gait analysis, and security surveillance. Despite its significance in various fields, attaining a high accuracy remains a formidable challenge. This letter proposes a multimodel stacking and ensemble framework for HAR. The proposed model uses a horizontal stacking approach integrating three different model, namely, ridge regression, LightGBM, and gradient boosting machine (GBM) combined to form a blended model. GBM is also serves as the meta-learner in this configuration. By leveraging this stacking framework, our model significantly enhances the accuracy of HAR. The proposed model achieves remarkable performance in publicly available datasets with accuracy rates of 98% on the HCI-HAR dataset, 99.10% on the WISDM dataset, and 99.20% on the mHealth dataset thereby surpassing existing benchmarks in machine learning. Therefore, the proposed model uses an ensemble stacking model to represent a promising avenue for enhancing HAR and has potential applications in various fields.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10659103/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Human activity recognition (HAR) plays an important role in various domains, such as healthcare, elderly care, sports, gait analysis, and security surveillance. Despite its significance in various fields, attaining a high accuracy remains a formidable challenge. This letter proposes a multimodel stacking and ensemble framework for HAR. The proposed model uses a horizontal stacking approach integrating three different model, namely, ridge regression, LightGBM, and gradient boosting machine (GBM) combined to form a blended model. GBM is also serves as the meta-learner in this configuration. By leveraging this stacking framework, our model significantly enhances the accuracy of HAR. The proposed model achieves remarkable performance in publicly available datasets with accuracy rates of 98% on the HCI-HAR dataset, 99.10% on the WISDM dataset, and 99.20% on the mHealth dataset thereby surpassing existing benchmarks in machine learning. Therefore, the proposed model uses an ensemble stacking model to represent a promising avenue for enhancing HAR and has potential applications in various fields.
人类活动识别的多模型堆叠和集合框架
人类活动识别(HAR)在医疗保健、老年人护理、体育运动、步态分析和安全监控等多个领域发挥着重要作用。尽管它在各个领域都具有重要意义,但要达到高精度仍然是一项艰巨的挑战。本文提出了一种用于 HAR 的多模型堆叠和集合框架。所提出的模型采用水平堆叠方法,将脊回归、LightGBM 和梯度提升机(GBM)这三种不同的模型结合起来,形成一个混合模型。在这种配置中,GBM 也是元学习器。通过利用这种堆叠框架,我们的模型大大提高了 HAR 的准确性。所提出的模型在公开数据集上取得了卓越的性能,在 HCI-HAR 数据集上的准确率为 98%,在 WISDM 数据集上的准确率为 99.10%,在 mHealth 数据集上的准确率为 99.20%,从而超越了机器学习领域的现有基准。因此,所提出的模型使用了集合堆叠模型,是提高 HAR 的一个有前途的途径,在各个领域都有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信