Universal Transfer Framework for Urban Spatiotemporal Knowledge Based on Radial Basis Function

Sheng-Min Chiu;Yow-Shin Liou;Yi-Chung Chen;Chiang Lee;Rong-Kang Shang;Tzu-Yin Chang;Roger Zimmermann
{"title":"Universal Transfer Framework for Urban Spatiotemporal Knowledge Based on Radial Basis Function","authors":"Sheng-Min Chiu;Yow-Shin Liou;Yi-Chung Chen;Chiang Lee;Rong-Kang Shang;Tzu-Yin Chang;Roger Zimmermann","doi":"10.1109/TAI.2024.3382267","DOIUrl":null,"url":null,"abstract":"The accurate and rapid transfer of complex urban spatiotemporal data is crucial for urban computing tasks such as urban planning and public transportation deployment for smart-city applications. Existing works consider auxiliary data or propose end-to-end models to process complex spatiotemporal information into more complex deep features. However, the latter is incapable of decoupling spatiotemporal knowledge, which means these end-to-end models lack modularity and substitutability. A general modular framework that can automatically capture simple representations of complex spatiotemporal information is required. In this article, we thus propose a universal framework for the transfer of spatiotemporal knowledge based on a radial basis function (RBF). We termed this approach spatial–temporal RBF transfer framework (STRBF-TF). The proposed STRBF-TF generates simple RBF representations of spatiotemporal flow distribution with an RBF transfer block and also leverages a channel attention mechanism. Moreover, we propose two RBF kernel initializers suitable for the source and the target domains, respectively. The framework retains important spatiotemporal knowledge in simple representations for the reconfiguration of spatiotemporal feature distribution for fast and accurate transfer. We conducted cross-domain learning experiments on a large real-world telecom dataset. The results demonstrate the efficiency and accuracy of the proposed approach, as well as its suitability for real-world applications.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 9","pages":"4458-4469"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10481516/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate and rapid transfer of complex urban spatiotemporal data is crucial for urban computing tasks such as urban planning and public transportation deployment for smart-city applications. Existing works consider auxiliary data or propose end-to-end models to process complex spatiotemporal information into more complex deep features. However, the latter is incapable of decoupling spatiotemporal knowledge, which means these end-to-end models lack modularity and substitutability. A general modular framework that can automatically capture simple representations of complex spatiotemporal information is required. In this article, we thus propose a universal framework for the transfer of spatiotemporal knowledge based on a radial basis function (RBF). We termed this approach spatial–temporal RBF transfer framework (STRBF-TF). The proposed STRBF-TF generates simple RBF representations of spatiotemporal flow distribution with an RBF transfer block and also leverages a channel attention mechanism. Moreover, we propose two RBF kernel initializers suitable for the source and the target domains, respectively. The framework retains important spatiotemporal knowledge in simple representations for the reconfiguration of spatiotemporal feature distribution for fast and accurate transfer. We conducted cross-domain learning experiments on a large real-world telecom dataset. The results demonstrate the efficiency and accuracy of the proposed approach, as well as its suitability for real-world applications.
基于径向基函数的城市时空知识通用传输框架
准确、快速地传输复杂的城市时空数据,对于城市规划和公共交通部署等城市计算任务至关重要。现有工作考虑了辅助数据或提出端到端模型,将复杂的时空信息处理成更复杂的深度特征。然而,后者无法解耦时空知识,这意味着这些端到端模型缺乏模块性和可替代性。我们需要一个能自动捕捉复杂时空信息简单表征的通用模块化框架。因此,我们在本文中提出了一种基于径向基函数(RBF)的时空知识传输通用框架。我们将这种方法称为时空 RBF 传输框架(STRBF-TF)。拟议的 STRBF-TF 通过 RBF 传输块生成时空流分布的简单 RBF 表示,同时还利用了通道注意机制。此外,我们还提出了分别适用于源域和目标域的两种 RBF 内核初始化器。该框架将重要的时空知识保留在简单的表征中,用于重新配置时空特征分布,以实现快速准确的传输。我们在一个大型真实世界电信数据集上进行了跨域学习实验。实验结果证明了所提出方法的效率和准确性,以及它在现实世界应用中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信