Luis Alberto Hernández-Hernández , José Alfredo Pescador-Rojas , Guillermo Santana-Rodríguez , Francisco Javier Martínez-Farías , E. Rangel-Cortes , Miguel Meléndez-Lira , Arturo Hernández-Hernández , Alberto Rubio-Ponce
{"title":"Interplay of luminescence and magnetic phenomena in Mn-doped ZnS zinc blende nanocrystals: Influence of magnetic doping","authors":"Luis Alberto Hernández-Hernández , José Alfredo Pescador-Rojas , Guillermo Santana-Rodríguez , Francisco Javier Martínez-Farías , E. Rangel-Cortes , Miguel Meléndez-Lira , Arturo Hernández-Hernández , Alberto Rubio-Ponce","doi":"10.1016/j.jlumin.2024.120870","DOIUrl":null,"url":null,"abstract":"<div><p>This research comprehensively investigates the interplay between luminescence and magnetic phenomena in the zinc blende phase of manganese-doped and undoped zinc sulfide. The study involves the synthesis of zinc sulfide nanocrystals through a soft chemical method, followed by an in-depth experimental characterization. Theoretical studies were conducted using a 2 × 2 × 2 supercell model with 64 atoms to explore the impact of native defects and manganese doping on zinc sulfide's the electronic, magnetic, and optical properties. The research findings offer a detailed physical description of magnetic and optic phenomena observed, underpinned by a strong correlation between theoretical predictions and experimental results. An essential contribution of this work is developing a depiction that elucidates the relationship between optical transitions and spin-exchange in the context of these phenomena.</p></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324004344","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This research comprehensively investigates the interplay between luminescence and magnetic phenomena in the zinc blende phase of manganese-doped and undoped zinc sulfide. The study involves the synthesis of zinc sulfide nanocrystals through a soft chemical method, followed by an in-depth experimental characterization. Theoretical studies were conducted using a 2 × 2 × 2 supercell model with 64 atoms to explore the impact of native defects and manganese doping on zinc sulfide's the electronic, magnetic, and optical properties. The research findings offer a detailed physical description of magnetic and optic phenomena observed, underpinned by a strong correlation between theoretical predictions and experimental results. An essential contribution of this work is developing a depiction that elucidates the relationship between optical transitions and spin-exchange in the context of these phenomena.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.