{"title":"THz band drone communications with practical antennas: Performance under realistic mobility and misalignment scenarios","authors":"Akhtar Saeed , Mikail Erdem , Ozgur Gurbuz , Mustafa Alper Akkas","doi":"10.1016/j.adhoc.2024.103644","DOIUrl":null,"url":null,"abstract":"<div><p>For 6G non-terrestrial communications, drones will offer uninterrupted connectivity for surveillance, sensing, and localization. They will also serve as drone base stations to support terrestrial base stations, providing large bandwidth, high-rate, and ultra-reliable low latency services. In this paper, for the first time in the literature, we depict the true performance of Terahertz (THz) band communications among drones by applying various channel selection and power allocation schemes with practical THz antennas within (0.75–4.4) THz under realistic mobility and misalignment scenarios. Through numerical simulations, we unveil the capacity of drone links under different channel selection and power allocation schemes within 10s to 100s of Gbps at distances (1–100) m, when drones are in motion and subject to (mis)alignment due to mobility and even under beam misalignment fading. However, when exposed to real drone mobility traces, the performance of all channel selection schemes drops significantly, sometimes by up to six orders of magnitude, due to the occasional reverse orientations of antennas. In addition to the capacity analysis, we report available frequency bands (transmission windows) considering all schemes and mobility patterns. We also identify a band that is commonly available under all considered mobility and misalignment settings, and we evaluate its performance in terms of spectral and energy efficiencies, which can be useful in designing THz transceivers for drone communications. Our findings emphasize the essence of active beam control solutions to achieve the desired capacity potential of THz drone communications, while also highlighting the challenges of utilizing the THz band for drone communications.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002555","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
For 6G non-terrestrial communications, drones will offer uninterrupted connectivity for surveillance, sensing, and localization. They will also serve as drone base stations to support terrestrial base stations, providing large bandwidth, high-rate, and ultra-reliable low latency services. In this paper, for the first time in the literature, we depict the true performance of Terahertz (THz) band communications among drones by applying various channel selection and power allocation schemes with practical THz antennas within (0.75–4.4) THz under realistic mobility and misalignment scenarios. Through numerical simulations, we unveil the capacity of drone links under different channel selection and power allocation schemes within 10s to 100s of Gbps at distances (1–100) m, when drones are in motion and subject to (mis)alignment due to mobility and even under beam misalignment fading. However, when exposed to real drone mobility traces, the performance of all channel selection schemes drops significantly, sometimes by up to six orders of magnitude, due to the occasional reverse orientations of antennas. In addition to the capacity analysis, we report available frequency bands (transmission windows) considering all schemes and mobility patterns. We also identify a band that is commonly available under all considered mobility and misalignment settings, and we evaluate its performance in terms of spectral and energy efficiencies, which can be useful in designing THz transceivers for drone communications. Our findings emphasize the essence of active beam control solutions to achieve the desired capacity potential of THz drone communications, while also highlighting the challenges of utilizing the THz band for drone communications.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.