Processing technologies of oil and gas based on molecular refining: Separation and conversion

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
Liang Zhao, Dongyang Liu, Yuhao Zhang, Jinsen Gao, Chunming Xu
{"title":"Processing technologies of oil and gas based on molecular refining: Separation and conversion","authors":"Liang Zhao,&nbsp;Dongyang Liu,&nbsp;Yuhao Zhang,&nbsp;Jinsen Gao,&nbsp;Chunming Xu","doi":"10.1016/j.cep.2024.109968","DOIUrl":null,"url":null,"abstract":"<div><p>Driven by the goal of carbon neutrality, the new development pattern of the refining and chemical industry has changed from distillate processing to component processing. A key difficulty in precise separation of oil and gas is a low separation efficiency, which could be attributed to poor gas-liquid mass transfer efficiency and poor match between selectivity and solubility. While in the oriented conversion of oil, low yield of the target product and short catalyst life are key constraints, since complex parallel sequence reactions in conversion process is difficult to control. Therefore, our research group has focused on the main line of \"precise separation and oriented conversion of oil and gas\", to cope with a key chemical common problems of \"mass transfer and reaction\" in the process of \"separation and conversion\" of C3-C20 hydrocarbon components, we solved two scientific problems of \"intermolecular force\" in separation process and \"structure-activity relationship of catalytic materials\" in conversion process. It has realized the goal of \"quality upgrade, product transformation and optimal utilization\" mainly for production of high-quality fuel and chemical feedstocks. And it has contributed to form a new pattern of refining and chemical integration of \"high-qualified oil and gas as well as high-value chemicals\".</p></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"205 ","pages":"Article 109968"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003064","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Driven by the goal of carbon neutrality, the new development pattern of the refining and chemical industry has changed from distillate processing to component processing. A key difficulty in precise separation of oil and gas is a low separation efficiency, which could be attributed to poor gas-liquid mass transfer efficiency and poor match between selectivity and solubility. While in the oriented conversion of oil, low yield of the target product and short catalyst life are key constraints, since complex parallel sequence reactions in conversion process is difficult to control. Therefore, our research group has focused on the main line of "precise separation and oriented conversion of oil and gas", to cope with a key chemical common problems of "mass transfer and reaction" in the process of "separation and conversion" of C3-C20 hydrocarbon components, we solved two scientific problems of "intermolecular force" in separation process and "structure-activity relationship of catalytic materials" in conversion process. It has realized the goal of "quality upgrade, product transformation and optimal utilization" mainly for production of high-quality fuel and chemical feedstocks. And it has contributed to form a new pattern of refining and chemical integration of "high-qualified oil and gas as well as high-value chemicals".

基于分子精炼的石油和天然气加工技术:分离和转化
在碳中和目标的推动下,炼油和化工行业的新发展模式已从馏分加工转变为组分加工。油气精确分离的关键难点是分离效率低,其原因可能是气液传质效率低、选择性与溶解性不匹配。而在石油的定向转化过程中,由于转化过程中复杂的平行顺序反应难以控制,目标产品收率低和催化剂寿命短是主要制约因素。为此,我们课题组围绕 "油气精准分离与定向转化 "这一主线,针对 C3-C20 碳氢组分 "分离与转化 "过程中 "传质与反应 "这一关键化学共性问题,解决了分离过程中的 "分子间作用力 "和转化过程中的 "催化材料的构效关系 "两大科学难题。实现了以生产优质燃料和化工原料为主的 "质量升级、产品转化、优化利用 "目标。为形成 "优质油气、高值化学品 "炼化一体化新格局做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信