Evy van Weelden , Travis J. Wiltshire , Maryam Alimardani , Max M. Louwerse
{"title":"Exploring the impact of virtual reality flight simulations on EEG neural patterns and task performance","authors":"Evy van Weelden , Travis J. Wiltshire , Maryam Alimardani , Max M. Louwerse","doi":"10.1016/j.cogsys.2024.101282","DOIUrl":null,"url":null,"abstract":"<div><p>Neurophysiological measurements, such as electroencephalography (EEG), can be used to derive insight into pilots’ mental states during flight training and to track learning progress in order to optimize the training experience for each individual. Prior work has demonstrated that the level of fidelity of a flight simulation (2D Desktop vs. 3D VR) is associated with different cortical activity in relation to task demands. However, it remains unknown whether simulation fidelity affects flight performance, and whether this effect can be observed in EEG neurophysiological responses associated with workload. The current study therefore assessed whether an EEG-based index of workload and task engagement is predictive of performance during flight training in different simulation environments. We conducted a within-subject designed experiment with 53 novice participants who performed two flight tasks (speed change, medium turn) under two conditions (Desktop vs. VR). EEG signals were collected throughout the experiment to quantify mental workload using the beta-ratio (<span><math><mfrac><mi>β</mi><mrow><mi>α</mi><mo>+</mo><mi>θ</mi></mrow></mfrac></math></span>). The VR condition showed increased beta-ratios in all lobes, including frontal and parietal areas, compared to the Desktop simulation. Additionally, we observed an effect of simulator environment on performance, as VR was associated with improved flight performance. However, we found no evidence of a relationship between the beta-ratio and performance. Our findings demonstrate that the brain responds differently to tasks in training environments of various levels of fidelity. However, more research into the neurometrics of flight training is needed in order to develop brain-computer interfaces that can enhance current pilot training methods by providing personalized feedback in real-time.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"88 ","pages":"Article 101282"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1389041724000767/pdfft?md5=9f83e22aa6fb4740aa0fce68260eb7b7&pid=1-s2.0-S1389041724000767-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000767","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Neurophysiological measurements, such as electroencephalography (EEG), can be used to derive insight into pilots’ mental states during flight training and to track learning progress in order to optimize the training experience for each individual. Prior work has demonstrated that the level of fidelity of a flight simulation (2D Desktop vs. 3D VR) is associated with different cortical activity in relation to task demands. However, it remains unknown whether simulation fidelity affects flight performance, and whether this effect can be observed in EEG neurophysiological responses associated with workload. The current study therefore assessed whether an EEG-based index of workload and task engagement is predictive of performance during flight training in different simulation environments. We conducted a within-subject designed experiment with 53 novice participants who performed two flight tasks (speed change, medium turn) under two conditions (Desktop vs. VR). EEG signals were collected throughout the experiment to quantify mental workload using the beta-ratio (). The VR condition showed increased beta-ratios in all lobes, including frontal and parietal areas, compared to the Desktop simulation. Additionally, we observed an effect of simulator environment on performance, as VR was associated with improved flight performance. However, we found no evidence of a relationship between the beta-ratio and performance. Our findings demonstrate that the brain responds differently to tasks in training environments of various levels of fidelity. However, more research into the neurometrics of flight training is needed in order to develop brain-computer interfaces that can enhance current pilot training methods by providing personalized feedback in real-time.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.