WANG Fuli , LÜ Qianxi , DONG Yiwen , XIE Jingyi , WANG Zhicai , DONG Bin , CHAI Yongming
{"title":"Ce-doped cobalt-based hydroxide assisted with low-temperature molten salt for industrial oxygen evolution reaction","authors":"WANG Fuli , LÜ Qianxi , DONG Yiwen , XIE Jingyi , WANG Zhicai , DONG Bin , CHAI Yongming","doi":"10.1016/S1872-5813(24)60456-1","DOIUrl":null,"url":null,"abstract":"<div><p>Developing low cost and high-performance oxygen evolution electrocatalysts is significant to improve the efficiency of water electrolysis for large-scale hydrogen production. Cobalt hydroxide is a promising electrocatalyst for oxygen evolution reaction (OER), but its poor conductivity and activity seriously restrict the practical application. A simple one-step low temperature molten salt method was applied to successfully synthesize the Ce-doped cobalt hydroxide nitrate (Ce-CoNH/CF), which exhibits outstanding OER performance with a low overpotential of 448 mV at the current density of 1000 mA/cm<sup>2</sup> in 1 mol/L KOH. The remarkable performance of Ce-CoNH/CF electrode in OER may be the comprehensive result of fast reaction kinetics, large electrochemical active specific surface area (ECSA) and small charge transfer resistance (<em>R</em><sub>ct</sub>) as revealed by the Tafel, cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) analysis. Under the simulated industrial test conditions (6 mol/L KOH, 70 °C), the Ce-CoNH/CF electrode still displays excellent OER performance.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1299-1306"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872581324604561/pdf?md5=d909c8fe5e1fe3d679ed6df672c58997&pid=1-s2.0-S1872581324604561-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Developing low cost and high-performance oxygen evolution electrocatalysts is significant to improve the efficiency of water electrolysis for large-scale hydrogen production. Cobalt hydroxide is a promising electrocatalyst for oxygen evolution reaction (OER), but its poor conductivity and activity seriously restrict the practical application. A simple one-step low temperature molten salt method was applied to successfully synthesize the Ce-doped cobalt hydroxide nitrate (Ce-CoNH/CF), which exhibits outstanding OER performance with a low overpotential of 448 mV at the current density of 1000 mA/cm2 in 1 mol/L KOH. The remarkable performance of Ce-CoNH/CF electrode in OER may be the comprehensive result of fast reaction kinetics, large electrochemical active specific surface area (ECSA) and small charge transfer resistance (Rct) as revealed by the Tafel, cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) analysis. Under the simulated industrial test conditions (6 mol/L KOH, 70 °C), the Ce-CoNH/CF electrode still displays excellent OER performance.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.