Study on the catalytic performance of Fe in-situ modified small crystallite Silicalite-1 zeolite in Chichibabin condensation reaction

Q3 Energy
TAO Jinquan , JIA Yijing , BAI Tianyu , HUANG Wenbin , CUI Yan , ZHOU Yasong , WEI Qiang
{"title":"Study on the catalytic performance of Fe in-situ modified small crystallite Silicalite-1 zeolite in Chichibabin condensation reaction","authors":"TAO Jinquan ,&nbsp;JIA Yijing ,&nbsp;BAI Tianyu ,&nbsp;HUANG Wenbin ,&nbsp;CUI Yan ,&nbsp;ZHOU Yasong ,&nbsp;WEI Qiang","doi":"10.1016/S1872-5813(24)60443-3","DOIUrl":null,"url":null,"abstract":"<div><p>Pyridine and its derivatives, collectively referred to as pyridine bases, are widely used in industries such as pesticides and pharmaceuticals, serving as crucial intermediates in the chemical industry. In recent years, with the development of the pesticide and pharmaceutical industries, the demand for pyridine bases has rapidly increased. The Chichibabin condensation reaction is the most commonly route for industrial production of pyridine bases. Currently, the most used ZSM-5 zeolite catalyst is limited by the instability of its silicon-aluminum framework structure, resulting in a short active reaction cycle (5 h). To address this limitation, this study selected the thermally stable and hydrothermally stable Silicalite-1 zeolite. Polyvinylpyrrolidone (PVP) was employed as a colloidal dispersant and Fe was introduced into the MFI framework through <em>in-situ</em> modification during the hydrothermal synthesis of zeolite. The influence of PVP dosage, template agent dosage, and other crystallization conditions on the crystallinity, pore structure, and acidity of Silicalite-1 zeolite products was investigated using XRD, SEM, TG, and N<sub>2</sub> adsorption-desorption measurement. The acidity of Fe-modified Silicalite-1 zeolites was characterized using NH<sub>3</sub>-TPD, Py-FTIR, FT-IR, and XPS. These results indicated that the introduction of seed crystals effectively reduced the particle size of the zeolite to about 200 nm. Fe-modified Silicalite-1 displayed a disk-like morphology with excellent crystal dispersion. The highest relative crystallinity of the zeolite reached 103% with 15% seed crystal input and 3.75% PVP addition. The Fe-modified Silicalite-1 possessed a significantly enhanced abundance of both Lewis (L) and Brønsted (B) acid sites, resulting in an increase in the initial activity from 66% to 85% for the pyridine bases synthesis through the Chichibabin condensation. Compared to ZSM-5, Fe-modified Silicalite-1 exhibited superior catalytic stability, maintaining the total carbon conversion and pyridine bases yield above 66% and 40%, respectively, over a 15 h reaction period. Furthermore, the strategy proposed in this study, employing polyvinylpyrrolidone as a colloidal stabilizer to modify Silicalite-1 zeolite, could significantly broadened the application prospects of weakly acidic pure silica zeolites in the field of acid catalysis. This approach has demonstrated significant scientific value and industrial potential.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1280-1289"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Pyridine and its derivatives, collectively referred to as pyridine bases, are widely used in industries such as pesticides and pharmaceuticals, serving as crucial intermediates in the chemical industry. In recent years, with the development of the pesticide and pharmaceutical industries, the demand for pyridine bases has rapidly increased. The Chichibabin condensation reaction is the most commonly route for industrial production of pyridine bases. Currently, the most used ZSM-5 zeolite catalyst is limited by the instability of its silicon-aluminum framework structure, resulting in a short active reaction cycle (5 h). To address this limitation, this study selected the thermally stable and hydrothermally stable Silicalite-1 zeolite. Polyvinylpyrrolidone (PVP) was employed as a colloidal dispersant and Fe was introduced into the MFI framework through in-situ modification during the hydrothermal synthesis of zeolite. The influence of PVP dosage, template agent dosage, and other crystallization conditions on the crystallinity, pore structure, and acidity of Silicalite-1 zeolite products was investigated using XRD, SEM, TG, and N2 adsorption-desorption measurement. The acidity of Fe-modified Silicalite-1 zeolites was characterized using NH3-TPD, Py-FTIR, FT-IR, and XPS. These results indicated that the introduction of seed crystals effectively reduced the particle size of the zeolite to about 200 nm. Fe-modified Silicalite-1 displayed a disk-like morphology with excellent crystal dispersion. The highest relative crystallinity of the zeolite reached 103% with 15% seed crystal input and 3.75% PVP addition. The Fe-modified Silicalite-1 possessed a significantly enhanced abundance of both Lewis (L) and Brønsted (B) acid sites, resulting in an increase in the initial activity from 66% to 85% for the pyridine bases synthesis through the Chichibabin condensation. Compared to ZSM-5, Fe-modified Silicalite-1 exhibited superior catalytic stability, maintaining the total carbon conversion and pyridine bases yield above 66% and 40%, respectively, over a 15 h reaction period. Furthermore, the strategy proposed in this study, employing polyvinylpyrrolidone as a colloidal stabilizer to modify Silicalite-1 zeolite, could significantly broadened the application prospects of weakly acidic pure silica zeolites in the field of acid catalysis. This approach has demonstrated significant scientific value and industrial potential.

铁原位改性小晶粒硅胶-1 沸石在 Chichibabin 缩合反应中的催化性能研究
吡啶及其衍生物统称为吡啶碱,广泛应用于农药和医药等行业,是化学工业的重要中间体。近年来,随着农药和医药行业的发展,吡啶碱的需求量迅速增加。Chichibabin 缩合反应是工业化生产吡啶碱最常用的途径。目前,最常用的 ZSM-5 沸石催化剂受限于其硅铝框架结构的不稳定性,导致活性反应周期短(5 小时)。为解决这一局限性,本研究选择了热稳定性和水热稳定性均较好的硅铝酸盐-1 沸石。在沸石的水热合成过程中,采用聚乙烯吡咯烷酮(PVP)作为胶体分散剂,并通过原位改性将铁引入 MFI 框架。利用 XRD、SEM、TG 和 N2 吸附-解吸测量法研究了 PVP 用量、模板剂用量和其他结晶条件对 Silicalite-1 沸石产品的结晶度、孔结构和酸度的影响。使用 NH3-TPD、Py-FTIR、FT-IR 和 XPS 对 Fe 改性 Silicalite-1 沸石的酸度进行了表征。这些结果表明,种子晶体的引入有效地将沸石的粒径减小到约 200 纳米。铁改性 Silicalite-1 呈圆盘状形态,晶体分散性极佳。15% 的籽晶和 3.75% 的 PVP 添加量使沸石的最高相对结晶度达到 103%。铁改性硅胶-1 的路易斯(L)酸和布伦斯特(B)酸位点的丰度显著提高,从而使通过 Chichibabin 缩合法合成吡啶碱的初始活性从 66% 提高到 85%。与 ZSM-5 相比,Fe 改性硅胶-1 表现出更高的催化稳定性,在 15 小时的反应时间内,碳的总转化率和吡啶碱的产率分别保持在 66% 和 40% 以上。此外,本研究提出的采用聚乙烯吡咯烷酮作为胶体稳定剂对 Silicalite-1 沸石进行改性的策略,可大大拓宽弱酸性纯硅沸石在酸催化领域的应用前景。这一研究方法具有重要的科学价值和工业潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信