A Python tool for parameter estimation of “black box” macro- and micro-kinetic models with Bayesian optimization – petBOA

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sashank Kasiraju , Yifan Wang , Saurabh Bhandari , Aayush R. Singh , Dionisios G. Vlachos
{"title":"A Python tool for parameter estimation of “black box” macro- and micro-kinetic models with Bayesian optimization – petBOA","authors":"Sashank Kasiraju ,&nbsp;Yifan Wang ,&nbsp;Saurabh Bhandari ,&nbsp;Aayush R. Singh ,&nbsp;Dionisios G. Vlachos","doi":"10.1016/j.cpc.2024.109358","DOIUrl":null,"url":null,"abstract":"<div><p>We develop an open-source Python-based Parameter Estimation Tool utilizing Bayesian Optimization (petBOA) with a unique wrapper interface for gradient-free parameter estimation of expensive black-box kinetic models. We provide examples for Python macrokinetic and microkinetic modeling (MKM) tools, such as Cantera and OpenMKM. petBOA leverages surrogate Gaussian processes to approximate and minimize the objective function designed for parameter estimation. Bayesian Optimization (BO) is implemented using the open-source BoTorch toolkit. petBOA employs local and global sensitivity analyses to identify important parameters optimized against experimental data, and leverages pMuTT for consistent kinetic and thermodynamic parameters while perturbing species binding energies within the typical error of conventional DFT exchange-correlation functionals (20-30 kJ/mol). The source code and documentation are hosted on GitHub.</p></div><div><h3>Program summary</h3><p><em>Program title</em>: petBOA</p><p><em>Developer's repository link</em>: <span><span>https://github.com/VlachosGroup/petBOA</span><svg><path></path></svg></span></p><p><em>Licensing provisions</em>: MIT license</p><p><em>Programming language</em>: Python</p><p><em>External routines</em>: NEXTorch, PyTorch, GPyTorch, BoTorch, Matplotlib, PyDOE2, NumPy, SciPy, pandas, pMuTT, SALib, docker.</p><p><em>Nature of the problem</em>: An open-source, gradient-free parameter estimation of black-box microkinetic modeling tools, such as OpenMKM is lacking.</p><p><em>Solution method</em>: petBOA is a Python-based tool that utilizes Bayesian Optimization and offers a unique wrapper interface for expensive black-box kinetic models. It leverages the pMuTT library for consistent kinetic and thermodynamic parameter estimation and employs both local and global sensitivity analyses to identify crucial parameters.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"306 ","pages":"Article 109358"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002819","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop an open-source Python-based Parameter Estimation Tool utilizing Bayesian Optimization (petBOA) with a unique wrapper interface for gradient-free parameter estimation of expensive black-box kinetic models. We provide examples for Python macrokinetic and microkinetic modeling (MKM) tools, such as Cantera and OpenMKM. petBOA leverages surrogate Gaussian processes to approximate and minimize the objective function designed for parameter estimation. Bayesian Optimization (BO) is implemented using the open-source BoTorch toolkit. petBOA employs local and global sensitivity analyses to identify important parameters optimized against experimental data, and leverages pMuTT for consistent kinetic and thermodynamic parameters while perturbing species binding energies within the typical error of conventional DFT exchange-correlation functionals (20-30 kJ/mol). The source code and documentation are hosted on GitHub.

Program summary

Program title: petBOA

Developer's repository link: https://github.com/VlachosGroup/petBOA

Licensing provisions: MIT license

Programming language: Python

External routines: NEXTorch, PyTorch, GPyTorch, BoTorch, Matplotlib, PyDOE2, NumPy, SciPy, pandas, pMuTT, SALib, docker.

Nature of the problem: An open-source, gradient-free parameter estimation of black-box microkinetic modeling tools, such as OpenMKM is lacking.

Solution method: petBOA is a Python-based tool that utilizes Bayesian Optimization and offers a unique wrapper interface for expensive black-box kinetic models. It leverages the pMuTT library for consistent kinetic and thermodynamic parameter estimation and employs both local and global sensitivity analyses to identify crucial parameters.

Abstract Image

利用贝叶斯优化对 "黑箱 "宏观和微观动力学模型进行参数估计的 Python 工具 - petBOA
我们开发了一种基于 Python 的开源参数估计工具--贝叶斯优化(petBOA),它具有独特的包装界面,可对昂贵的黑盒动力学模型进行无梯度参数估计。我们提供了用于 Python 宏动力学和微动力学建模(MKM)工具(如 Cantera 和 OpenMKM)的示例。petBOA 利用代理高斯过程来近似并最小化为参数估计设计的目标函数。petBOA 采用局部和全局敏感性分析来确定根据实验数据优化的重要参数,并利用 pMuTT 获得一致的动力学和热力学参数,同时将物种结合能的扰动控制在传统 DFT 交换相关函数的典型误差(20-30 kJ/mol)范围内。源代码和文档托管在 GitHub 上。程序摘要程序标题:petBOAD开发者资源库链接:https://github.com/VlachosGroup/petBOALicensing provisions:MIT 许可证编程语言:Python外部例程:NEXTorch、PyTorch、GPyTorch、BoTorch、Matplotlib、PyDOE2、NumPy、SciPy、pandas、pMuTT、SALib、docker.问题性质:缺乏开源、无梯度参数估计的黑盒微动力学建模工具,如 OpenMKM。解决方法:petBOA 是一款基于 Python 的工具,它利用贝叶斯优化(Bayesian Optimization)技术,为昂贵的黑盒微观动力学模型提供了一个独特的封装接口。它利用 pMuTT 库进行一致的动力学和热力学参数估计,并采用局部和全局敏感性分析来确定关键参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信