Some interlacing properties related to the Eulerian and derangement polynomials

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Lily Li Liu, Xue Yan
{"title":"Some interlacing properties related to the Eulerian and derangement polynomials","authors":"Lily Li Liu,&nbsp;Xue Yan","doi":"10.1016/j.aam.2024.102776","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider two matrices of polynomials <span><math><msub><mrow><mo>[</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mo>[</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, which are defined by a recurrence relation from a sequence of polynomials with real coefficients. These matrices play an important role in the study of the Eulerian and derangement transformations by Athanasiadis, who asked when their rows form interlacing sequences of real-rooted polynomials. In this paper, we give an answer to this question. In our setup, all columns of these matrices are shown to be generalized Sturm sequences. As applications, we show that the derangement transformation, its type <em>B</em> analogue and the <em>r</em>-colored derangement transformation of a class of polynomials with nonnegative coefficients, and all roots in the interval <span><math><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo></math></span>, have only real roots in a unified manner. The question about the type <em>B</em> derangement transformation was also raised by Athanasiadis. Furthermore, we show that the diagonal line of <span><math><msub><mrow><mo>[</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mo>[</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> forms a generalized Sturm sequence respectively, i.e., we give sufficient conditions for the binomial transformation to preserve the interlacing property.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824001088/pdfft?md5=4128db605d5a508bd857a5c53a34cfc3&pid=1-s2.0-S0196885824001088-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001088","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider two matrices of polynomials [hn,k(t)]n0 and [ln,k(t)]n0, which are defined by a recurrence relation from a sequence of polynomials with real coefficients. These matrices play an important role in the study of the Eulerian and derangement transformations by Athanasiadis, who asked when their rows form interlacing sequences of real-rooted polynomials. In this paper, we give an answer to this question. In our setup, all columns of these matrices are shown to be generalized Sturm sequences. As applications, we show that the derangement transformation, its type B analogue and the r-colored derangement transformation of a class of polynomials with nonnegative coefficients, and all roots in the interval [1,0], have only real roots in a unified manner. The question about the type B derangement transformation was also raised by Athanasiadis. Furthermore, we show that the diagonal line of [hn,k(t)]n0 and [ln,k(t)]n0 forms a generalized Sturm sequence respectively, i.e., we give sufficient conditions for the binomial transformation to preserve the interlacing property.

与欧拉多项式和偏差多项式有关的一些交错性质
在本文中,我们考虑了两个多项式矩阵 [hn,k(t)]n≥0 和 [ln,k(t)]n≥0 ,它们是通过实系数多项式序列的递推关系定义的。这些矩阵在阿塔纳西亚迪斯(Athanasiadis)的欧拉变换和 derangement 变换研究中发挥了重要作用,他曾询问这些矩阵的行何时形成实根多项式的交错序列。在本文中,我们给出了这一问题的答案。在我们的设置中,这些矩阵的所有列都被证明是广义斯特姆序列。作为应用,我们以统一的方式证明了一类系数为非负且所有根都在区间 [-1,0] 内的多项式的失真变换、其 B 型类似物和 r 色失真变换只有实根。关于 B 型失真变换的问题也是由阿塔纳西亚迪斯提出的。此外,我们还证明了 [hn,k(t)]n≥0 和 [ln,k(t)]n≥0 的对角线分别构成广义斯特姆序列,即给出了二项式变换保持交错性质的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信