{"title":"Some interlacing properties related to the Eulerian and derangement polynomials","authors":"Lily Li Liu, Xue Yan","doi":"10.1016/j.aam.2024.102776","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider two matrices of polynomials <span><math><msub><mrow><mo>[</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mo>[</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, which are defined by a recurrence relation from a sequence of polynomials with real coefficients. These matrices play an important role in the study of the Eulerian and derangement transformations by Athanasiadis, who asked when their rows form interlacing sequences of real-rooted polynomials. In this paper, we give an answer to this question. In our setup, all columns of these matrices are shown to be generalized Sturm sequences. As applications, we show that the derangement transformation, its type <em>B</em> analogue and the <em>r</em>-colored derangement transformation of a class of polynomials with nonnegative coefficients, and all roots in the interval <span><math><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo></math></span>, have only real roots in a unified manner. The question about the type <em>B</em> derangement transformation was also raised by Athanasiadis. Furthermore, we show that the diagonal line of <span><math><msub><mrow><mo>[</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mo>[</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> forms a generalized Sturm sequence respectively, i.e., we give sufficient conditions for the binomial transformation to preserve the interlacing property.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824001088/pdfft?md5=4128db605d5a508bd857a5c53a34cfc3&pid=1-s2.0-S0196885824001088-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001088","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider two matrices of polynomials and , which are defined by a recurrence relation from a sequence of polynomials with real coefficients. These matrices play an important role in the study of the Eulerian and derangement transformations by Athanasiadis, who asked when their rows form interlacing sequences of real-rooted polynomials. In this paper, we give an answer to this question. In our setup, all columns of these matrices are shown to be generalized Sturm sequences. As applications, we show that the derangement transformation, its type B analogue and the r-colored derangement transformation of a class of polynomials with nonnegative coefficients, and all roots in the interval , have only real roots in a unified manner. The question about the type B derangement transformation was also raised by Athanasiadis. Furthermore, we show that the diagonal line of and forms a generalized Sturm sequence respectively, i.e., we give sufficient conditions for the binomial transformation to preserve the interlacing property.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.