Effect of Rh loading on the selectivity to methanol and ethanol in the hydrogenation of CO2 over the Rh/CeO2 catalyst

Q3 Energy
ZHENG Ke, LIU Bing, XU Yuebing, LIU Xiaohao
{"title":"Effect of Rh loading on the selectivity to methanol and ethanol in the hydrogenation of CO2 over the Rh/CeO2 catalyst","authors":"ZHENG Ke,&nbsp;LIU Bing,&nbsp;XU Yuebing,&nbsp;LIU Xiaohao","doi":"10.1016/S1872-5813(24)60450-0","DOIUrl":null,"url":null,"abstract":"<div><p>The capture and hydrogenation of CO<sub>2</sub> into high-value chemicals such as alcohols is one of the important ways to reduce CO<sub>2</sub> emission and achieve carbon resource recycling. In this work, the catalytic performance of Rh/CeO<sub>2</sub> catalyst in the CO<sub>2</sub> hydrogenation was investigated; with the help of various characterization methods including XRD, Raman, H<sub>2</sub>-TPR, CO<sub>2</sub>-TPD, CO-DRIFTS and XPS, the influence of Rh loading (0.1%–2.0%) on the catalytic activity of Rh/CeO<sub>2</sub> and product selectivity in the CO<sub>2</sub> hydrogenation was revealed. The results indicate that for the hydrogenation of CO<sub>2</sub> at 250 °C and 3.0 MPa over the Rh/CeO<sub>2</sub> catalysts, ethanol is the major product at a low Rh loading of 0.1%. With the increase of Rh loading, the conversion of CO<sub>2</sub> increases, but accompanied by a decrease in the selectivity to ethanol; when the Rh loading reaches 2.0%, the main product turns to be methanol. It seems that the difference of various Rh/CeO<sub>2</sub> catalysts with different Rh loadings in the product selectivity for the CO<sub>2</sub> hydrogenation is ascribed to their difference in the structural and electronic properties of Rh; atomically dispersed Rh<sup>+</sup> species favor the stabilization of CO* and its subsequent C–C coupling with CH<sub>3</sub>* to form ethanol, whereas metallic Rh clusters facilitate the hydrogenation of CO* to produce methanol.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 9","pages":"Pages 1214-1223"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The capture and hydrogenation of CO2 into high-value chemicals such as alcohols is one of the important ways to reduce CO2 emission and achieve carbon resource recycling. In this work, the catalytic performance of Rh/CeO2 catalyst in the CO2 hydrogenation was investigated; with the help of various characterization methods including XRD, Raman, H2-TPR, CO2-TPD, CO-DRIFTS and XPS, the influence of Rh loading (0.1%–2.0%) on the catalytic activity of Rh/CeO2 and product selectivity in the CO2 hydrogenation was revealed. The results indicate that for the hydrogenation of CO2 at 250 °C and 3.0 MPa over the Rh/CeO2 catalysts, ethanol is the major product at a low Rh loading of 0.1%. With the increase of Rh loading, the conversion of CO2 increases, but accompanied by a decrease in the selectivity to ethanol; when the Rh loading reaches 2.0%, the main product turns to be methanol. It seems that the difference of various Rh/CeO2 catalysts with different Rh loadings in the product selectivity for the CO2 hydrogenation is ascribed to their difference in the structural and electronic properties of Rh; atomically dispersed Rh+ species favor the stabilization of CO* and its subsequent C–C coupling with CH3* to form ethanol, whereas metallic Rh clusters facilitate the hydrogenation of CO* to produce methanol.

Rh 负荷对 Rh/CeO2 催化剂在 CO2 加氢过程中甲醇和乙醇选择性的影响
将二氧化碳捕获并加氢转化为酒精等高价值化学品是减少二氧化碳排放和实现碳资源循环利用的重要途径之一。本研究采用 XRD、拉曼、H2-TPR、CO2-TPD、CO-DRIFTS 和 XPS 等多种表征方法,研究了 Rh/CeO2 催化剂在 CO2 加氢过程中的催化性能,揭示了 Rh 加载量(0.1%-2.0%)对 Rh/CeO2 催化活性和 CO2 加氢产物选择性的影响。结果表明,Rh/CeO2 催化剂在 250 °C 和 3.0 MPa 条件下进行 CO2 加氢反应时,Rh 低负载量(0.1%)时的主要产物是乙醇。随着 Rh 加载量的增加,CO2 的转化率提高,但同时乙醇的选择性降低;当 Rh 加载量达到 2.0% 时,主要产物变成了甲醇。原子分散的 Rh+ 物种有利于 CO* 的稳定及其随后与 CH3* 的 C-C 偶联生成乙醇,而金属 Rh 簇团则有利于 CO* 加氢生成甲醇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信