{"title":"Innovative approaches in invertase immobilization: Utilizing green synthesized zinc oxide nanoparticles to improve biochemical properties","authors":"Somayeh Sadi , Marzieh Ghollasi , Khadijeh Eskandari , Elahe Darvishi","doi":"10.1016/j.ab.2024.115661","DOIUrl":null,"url":null,"abstract":"<div><p>Invertase enzyme can effectively improve the taste, color, and durability of these products. Various methods have been proposed to increase the stability and efficiency of enzymes. One of the most important is enzyme immobilization, which can be implemented on different materials. The purpose of this study was to immobilize the invertase enzyme on the surface of green synthesized zinc oxide nanoparticles and to investigate its biochemical properties. The enzyme immobilization was confirmed by SEM and Raman spectroscopy. Then, the biochemical characteristics, such as optimal pH and temperature, thermal stability, and storage stability of free and immobilized enzymes, were determined. The results of SEM showed that the diameter of synthesized nanoparticles was about 60 ± 5 nm. FTIR of immobilized invertase confirmed the immobilization process. The immobilization efficiency was determined to be 72 %. Immobilized enzyme showed higher thermal stability at 40 and 50 °C. Immobilized enzyme could be used 8 times in optimum condition. Also, an Examination of the kinetic parameters of the immobilized enzyme compared with those of the free enzyme showed a decrease in the maximum velocity of the enzyme. It seems that the immobilized invertase has improved characteristics for application in different industries.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"696 ","pages":"Article 115661"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724002057","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Invertase enzyme can effectively improve the taste, color, and durability of these products. Various methods have been proposed to increase the stability and efficiency of enzymes. One of the most important is enzyme immobilization, which can be implemented on different materials. The purpose of this study was to immobilize the invertase enzyme on the surface of green synthesized zinc oxide nanoparticles and to investigate its biochemical properties. The enzyme immobilization was confirmed by SEM and Raman spectroscopy. Then, the biochemical characteristics, such as optimal pH and temperature, thermal stability, and storage stability of free and immobilized enzymes, were determined. The results of SEM showed that the diameter of synthesized nanoparticles was about 60 ± 5 nm. FTIR of immobilized invertase confirmed the immobilization process. The immobilization efficiency was determined to be 72 %. Immobilized enzyme showed higher thermal stability at 40 and 50 °C. Immobilized enzyme could be used 8 times in optimum condition. Also, an Examination of the kinetic parameters of the immobilized enzyme compared with those of the free enzyme showed a decrease in the maximum velocity of the enzyme. It seems that the immobilized invertase has improved characteristics for application in different industries.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.