{"title":"State feedback control of HPR1000 average coolant temperature based on dominant pole","authors":"Ziqi Fan, Xianshan Zhang, Kaiyang Zheng, Peiwei Sun, Xinyu Wei","doi":"10.1016/j.nucengdes.2024.113569","DOIUrl":null,"url":null,"abstract":"<div><p>Control of nuclear power plant is still based on the traditional PID control system, which is difficult to obtain high control quality in the process of a wide range of load changes. To effectively use the measurable information of the system and consider the constraints, state feedback control based on the dominant pole method is proposed for the average coolant temperature control of HPR1000. The control system is divided into two parts: one part is a feedback branch, which realizes the state feedback by using the measurable system state quantity including the core inlet temperature, the core outlet temperature and the reactor power, and at the same time introduces the integral link to reduce the steady-state error; the other part is a feedforward branch, which uses the nominal load change to make feedforward compensation to improve the control performance of load tracking. At the same time, Particle Swarm Optimization (PSO) method is used to optimize the controller parameters, and the dominant pole meeting the requirements is obtained. The control performance under different working conditions is verified on the HPR1000 model. The test results show that the state feedback control can effectively improve the setpoint tracking ability and anti-disturbance ability.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0029549324006691/pdfft?md5=ea054a99fc75dcd24f5692a939d1f2dd&pid=1-s2.0-S0029549324006691-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324006691","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Control of nuclear power plant is still based on the traditional PID control system, which is difficult to obtain high control quality in the process of a wide range of load changes. To effectively use the measurable information of the system and consider the constraints, state feedback control based on the dominant pole method is proposed for the average coolant temperature control of HPR1000. The control system is divided into two parts: one part is a feedback branch, which realizes the state feedback by using the measurable system state quantity including the core inlet temperature, the core outlet temperature and the reactor power, and at the same time introduces the integral link to reduce the steady-state error; the other part is a feedforward branch, which uses the nominal load change to make feedforward compensation to improve the control performance of load tracking. At the same time, Particle Swarm Optimization (PSO) method is used to optimize the controller parameters, and the dominant pole meeting the requirements is obtained. The control performance under different working conditions is verified on the HPR1000 model. The test results show that the state feedback control can effectively improve the setpoint tracking ability and anti-disturbance ability.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.