{"title":"Investigations on thermal properties of Kevlar K49 type fiber reinforced sugarcane ash blended polyester composite","authors":"","doi":"10.1016/j.tsep.2024.102880","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the thermal properties of a composite material made from Kevlar K49 fiber reinforced sugarcane bagasse blended with polyester. The focus is on thermal conductivity, coefficient of linear thermal expansion (CTE), heat deflection temperature (HDT), and thermogravimetric analysis (TGA). The composite material’s thermal conductivity ranging from 4.68 to 4.97 W/mK demonstrates its suitability for thermal insulation applications. The CTE determined to be 2.98 × 10<sup>–6</sup> /°C, indicates enhanced dimensional stability during thermal cycling. The composite’s HDT ranging from 132 to 145 °C demonstrates its ability to maintain structural integrity under elevated temperatures. The TGA reveals a complex degradation pattern, exhibiting significant thermal stability up to 350 °C and a residual weight of 30–40 %, highlighting the durability of the composite. These findings suggest that incorporating Kevlar K49 filaments and sugarcane ash into the polyester matrix significantly enhances the thermal performance of the composite. This makes it an excellent choice for high-performance applications in industries such as automotive, aviation, and others that require effective thermal management and stability.</p></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451904924004980/pdfft?md5=40297d8cd10b76bce92bdfb08849ca66&pid=1-s2.0-S2451904924004980-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924004980","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the thermal properties of a composite material made from Kevlar K49 fiber reinforced sugarcane bagasse blended with polyester. The focus is on thermal conductivity, coefficient of linear thermal expansion (CTE), heat deflection temperature (HDT), and thermogravimetric analysis (TGA). The composite material’s thermal conductivity ranging from 4.68 to 4.97 W/mK demonstrates its suitability for thermal insulation applications. The CTE determined to be 2.98 × 10–6 /°C, indicates enhanced dimensional stability during thermal cycling. The composite’s HDT ranging from 132 to 145 °C demonstrates its ability to maintain structural integrity under elevated temperatures. The TGA reveals a complex degradation pattern, exhibiting significant thermal stability up to 350 °C and a residual weight of 30–40 %, highlighting the durability of the composite. These findings suggest that incorporating Kevlar K49 filaments and sugarcane ash into the polyester matrix significantly enhances the thermal performance of the composite. This makes it an excellent choice for high-performance applications in industries such as automotive, aviation, and others that require effective thermal management and stability.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.