Hierarchical Partitioning Forecaster

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Christopher Mattern
{"title":"Hierarchical Partitioning Forecaster","authors":"Christopher Mattern","doi":"10.1016/j.physd.2024.134335","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we consider a new family of algorithms for sequential prediction, Hierarchical Partitioning Forecasters (HPFs). Our goal is to provide appealing theoretical - regret guarantees on a powerful model class - and practical - empirical performance comparable to deep networks - properties <em>at the same time</em>. We built upon three principles: hierarchically partitioning the feature space into sub-spaces, blending forecasters specialized to each sub-space and learning HPFs via local online learning applied to these individual forecasters. Following these principles allows us to obtain regret guarantees, where Constant Partitioning Forecasters (CPFs) serve as competitor. A CPF partitions the feature space into sub-spaces and predicts with a fixed forecaster per sub-space. Fixing a hierarchical partition <span><math><mi>H</mi></math></span> and considering any CPF with a partition that can be constructed using elements of <span><math><mi>H</mi></math></span> we provide two guarantees: first, a generic one that unveils how local online learning determines regret of learning the entire HPF online; second, a concrete instance that considers HPF with linear forecasters (LHPF) and exp-concave losses where we obtain <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>k</mi><mo>log</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> regret for sequences of length <span><math><mi>T</mi></math></span> where <span><math><mi>k</mi></math></span> is a measure of complexity for the competing CPF. Finally, we provide experiments that compare LHPF to various baselines, including state of the art deep learning models, in precipitation nowcasting. Our results indicate that LHPF is competitive in various settings.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we consider a new family of algorithms for sequential prediction, Hierarchical Partitioning Forecasters (HPFs). Our goal is to provide appealing theoretical - regret guarantees on a powerful model class - and practical - empirical performance comparable to deep networks - properties at the same time. We built upon three principles: hierarchically partitioning the feature space into sub-spaces, blending forecasters specialized to each sub-space and learning HPFs via local online learning applied to these individual forecasters. Following these principles allows us to obtain regret guarantees, where Constant Partitioning Forecasters (CPFs) serve as competitor. A CPF partitions the feature space into sub-spaces and predicts with a fixed forecaster per sub-space. Fixing a hierarchical partition H and considering any CPF with a partition that can be constructed using elements of H we provide two guarantees: first, a generic one that unveils how local online learning determines regret of learning the entire HPF online; second, a concrete instance that considers HPF with linear forecasters (LHPF) and exp-concave losses where we obtain O(klogT) regret for sequences of length T where k is a measure of complexity for the competing CPF. Finally, we provide experiments that compare LHPF to various baselines, including state of the art deep learning models, in precipitation nowcasting. Our results indicate that LHPF is competitive in various settings.

分层分区预报员
在这项工作中,我们考虑了一种新的连续预测算法系列--分层预测算法(HPFs)。我们的目标是同时提供有吸引力的理论(对一个强大模型类别的遗憾保证)和实践(可与深度网络媲美的经验性能)特性。我们基于三条原则:将特征空间分层划分为子空间,混合专门针对每个子空间的预测器,并通过应用于这些单个预测器的本地在线学习来学习 HPF。遵循这些原则,我们就能获得遗憾保证,其中恒定分区预测器(CPF)是竞争对手。CPF 将特征空间划分为子空间,并在每个子空间中使用固定的预测器进行预测。固定一个分层分区 H,并考虑到任何 CPF 的分区都可以使用 H 的元素来构建,我们提供了两种保证:第一种是通用保证,它揭示了局部在线学习如何决定整个 HPF 在线学习的遗憾;第二种是具体实例,它考虑了具有线性预测器(LHPF)和指数-凹损失的 HPF,在这种情况下,对于长度为 T 的序列,我们获得了 O(klogT) 遗憾,其中 k 是竞争 CPF 的复杂性度量。最后,我们提供了在降水预报中将 LHPF 与各种基准(包括最先进的深度学习模型)进行比较的实验。我们的结果表明,LHPF 在各种情况下都具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信