Single-step densification and magneto-dielectric response of Y3Fe5O12–EDTA composites for microwave substrates

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rakhi Madhuri, Subodh Ganesanpotti
{"title":"Single-step densification and magneto-dielectric response of Y3Fe5O12–EDTA composites for microwave substrates","authors":"Rakhi Madhuri,&nbsp;Subodh Ganesanpotti","doi":"10.1016/j.materresbull.2024.113080","DOIUrl":null,"url":null,"abstract":"<div><p>Numerous studies have been conducted over the past few decades on energy-efficient, sustainable, and cost-effective materials and technologies for consumer electronics. Among such materials, ferrite-based compounds are expected to play a significant role in the miniaturization of circuits. However, densification of such materials is a very challenging problem. The cold sintering process (CSP) has recently been found as an alternative strategy for producing advanced materials, enabling their densification at low temperatures. The present work uses different volume fractions of Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> with EDTA to create a dense composite system. Here, we report the synthesis of composites of the formula (1 –<em>x</em>)Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>-<em>x</em>EDTA (<em>x</em> = 0.2, 0.3, 0.4, 0.5) through CSP. These composites possess a permittivity of 6.4–7 combined with a loss tangent of 10<sup>–2</sup>. Moreover, for the 0.5 EDTA composite, ε<sub>r</sub> of 5.7 and tanδ of 0.01 are obtained at 10 GHz, suggesting the prepared composites' potential for substrate applications.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"181 ","pages":"Article 113080"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025540824004112/pdfft?md5=a33f24d8a0c82009e576944109be36d5&pid=1-s2.0-S0025540824004112-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004112","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous studies have been conducted over the past few decades on energy-efficient, sustainable, and cost-effective materials and technologies for consumer electronics. Among such materials, ferrite-based compounds are expected to play a significant role in the miniaturization of circuits. However, densification of such materials is a very challenging problem. The cold sintering process (CSP) has recently been found as an alternative strategy for producing advanced materials, enabling their densification at low temperatures. The present work uses different volume fractions of Y3Fe5O12 with EDTA to create a dense composite system. Here, we report the synthesis of composites of the formula (1 –x)Y3Fe5O12-xEDTA (x = 0.2, 0.3, 0.4, 0.5) through CSP. These composites possess a permittivity of 6.4–7 combined with a loss tangent of 10–2. Moreover, for the 0.5 EDTA composite, εr of 5.7 and tanδ of 0.01 are obtained at 10 GHz, suggesting the prepared composites' potential for substrate applications.

Abstract Image

用于微波基底的 Y3Fe5O12-EDTA 复合材料的单步致密化和磁介质响应
在过去的几十年里,人们对高能效、可持续和高成本效益的消费电子产品材料和技术进行了大量研究。在这些材料中,铁氧体基化合物有望在电路微型化方面发挥重要作用。然而,此类材料的致密化是一个极具挑战性的问题。最近,人们发现冷烧结工艺(CSP)是生产先进材料的另一种策略,可以在低温下实现材料的致密化。本研究利用不同体积分数的 Y3Fe5O12 和 EDTA 来创建致密复合材料体系。在此,我们报告了通过 CSP 合成式 (1 -x)Y3Fe5O12-xEDTA (x = 0.2, 0.3, 0.4, 0.5) 的复合材料。这些复合材料的介电常数为 6.4-7,损耗正切为 10-2。此外,0.5 EDTA 复合材料在 10 GHz 频率下的εr 为 5.7,tanδ 为 0.01,这表明所制备的复合材料具有基底应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信