{"title":"Lagrangian densities of 4-uniform matchings and degree stability of extremal hypergraphs","authors":"Zilong Yan , Yuejian Peng","doi":"10.1016/j.disc.2024.114235","DOIUrl":null,"url":null,"abstract":"<div><p>The Lagrangian density of an <em>r</em>-uniform graph <em>F</em> is <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><mi>sup</mi><mo></mo><mo>{</mo><mi>r</mi><mo>!</mo><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>:</mo><mi>G</mi><mspace></mspace><mi>i</mi><mi>s</mi><mspace></mspace><mi>F</mi><mtext>-</mtext><mi>f</mi><mi>r</mi><mi>e</mi><mi>e</mi><mo>}</mo></math></span>, where <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the Lagrangian of an <em>r</em>-uniform graph <em>G</em>. Hypergraph Lagrangian has been a helpful tool in extremal combinatorics. Let <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote the <em>r</em>-uniform matching with size <em>t</em>. The well-known Erdős Matching conjecture proposed that the Turán number of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is <span><math><mi>max</mi><mo></mo><mo>{</mo><mi>e</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mi>r</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>,</mo><mi>e</mi><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo><mo>}</mo></math></span>, where <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mi>r</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is the complete <em>r</em>-graph on <span><math><mi>r</mi><mi>t</mi><mo>−</mo><mn>1</mn></math></span> vertices and <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>r</em>-graph with vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> and with edge set <span><math><mi>E</mi><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo><mo>=</mo><mo>{</mo><mi>e</mi><mo>∈</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>r</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>:</mo><mo>|</mo><mi>e</mi><mo>∩</mo><mo>[</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>]</mo><mo>|</mo><mo>≥</mo><mn>1</mn><mo>}</mo></math></span>. Regarding Lagrangian density of hypergraph matchings, Jiang, Peng and Wu <span><span>[22]</span></span> (Wu <span><span>[34]</span></span> as well) conjectured that the property similar to Erdős Matching Conjecture holds, precisely, they conjectured that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mi>m</mi><mi>a</mi><mi>x</mi><mo>{</mo><mi>r</mi><mo>!</mo><mi>λ</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mi>r</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>,</mo><mi>r</mi><mo>!</mo><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo></mo><mi>λ</mi><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>(</mo><mi>n</mi><mo>)</mo><mo>}</mo></math></span>. Hefetz and Keevash <span><span>[18]</span></span> confirmed for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>, Jiang, Peng and Wu <span><span>[22]</span></span> confirmed for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>, Wu, Peng and Chen <span><span>[35]</span></span> confirmed for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>, Bene Watts, Norin and Yepremyan <span><span>[2]</span></span> confirmed for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>4</mn></math></span>, Wu <span><span>[34]</span></span> confirmed for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>. In this paper, we show that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msubsup><mo>)</mo><mo>=</mo><mn>4</mn><mo>!</mo><mi>λ</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>4</mn><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>4</mn></mrow></msubsup><mo>)</mo></math></span> if <span><math><mi>t</mi><mo>≥</mo><mn>4</mn></math></span>, this settles the conjecture for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>. Our result has also interesting applications. Combining our result and Theorem 1.12 in <span><span>[26]</span></span> by Liu, Mubayi and Reiher, we can obtain the Turán density of the extension of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span> (<span><math><mi>t</mi><mo>≥</mo><mn>4</mn></math></span>) and the degree stability (a stability stronger than the edge stability) of extremal hypergraphs. Combining our result and Theorem 1.4 in <span><span>[24]</span></span> by Keevash, Lenz and Mubayi <span><span>[24]</span></span>, we can also obtain that if <em>G</em> is an <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>-free 4-uniform hypergraph with <em>n</em> vertices, then the <em>α</em>-spectral radius of <em>G</em> is no more than the <em>α</em>-spectral radius of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>4</mn><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>4</mn></mrow></msubsup></math></span> if <span><math><mi>α</mi><mo>></mo><mn>1</mn></math></span>, <em>n</em> is large enough and <span><math><mi>t</mi><mo>≥</mo><mn>4</mn></math></span>. Indeed, for hypergraphs satisfying the conditions in Theorem 1.12 by Liu, Mubayi and Reiher <span><span>[26]</span></span> or Theorem 1.4 in <span><span>[24]</span></span> by Keevash, Lenz and Mubayi, to obtain the degree stability of corresponding extremal hypergraphs or corresponding <em>α</em>-spectral results, it is sufficient to determine the Lagrangian densities of corresponding hypergraphs. These connections add more motivations to determine Lagrangian densities of hypergraphs.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114235"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003662/pdfft?md5=9242f6e0ae9a52d7a2d53e03f6ceabb7&pid=1-s2.0-S0012365X24003662-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003662","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Lagrangian density of an r-uniform graph F is , where is the Lagrangian of an r-uniform graph G. Hypergraph Lagrangian has been a helpful tool in extremal combinatorics. Let denote the r-uniform matching with size t. The well-known Erdős Matching conjecture proposed that the Turán number of is , where is the complete r-graph on vertices and is the r-graph with vertex set and with edge set . Regarding Lagrangian density of hypergraph matchings, Jiang, Peng and Wu [22] (Wu [34] as well) conjectured that the property similar to Erdős Matching Conjecture holds, precisely, they conjectured that . Hefetz and Keevash [18] confirmed for , Jiang, Peng and Wu [22] confirmed for , Wu, Peng and Chen [35] confirmed for , Bene Watts, Norin and Yepremyan [2] confirmed for for , Wu [34] confirmed for . In this paper, we show that if , this settles the conjecture for . Our result has also interesting applications. Combining our result and Theorem 1.12 in [26] by Liu, Mubayi and Reiher, we can obtain the Turán density of the extension of () and the degree stability (a stability stronger than the edge stability) of extremal hypergraphs. Combining our result and Theorem 1.4 in [24] by Keevash, Lenz and Mubayi [24], we can also obtain that if G is an -free 4-uniform hypergraph with n vertices, then the α-spectral radius of G is no more than the α-spectral radius of if , n is large enough and . Indeed, for hypergraphs satisfying the conditions in Theorem 1.12 by Liu, Mubayi and Reiher [26] or Theorem 1.4 in [24] by Keevash, Lenz and Mubayi, to obtain the degree stability of corresponding extremal hypergraphs or corresponding α-spectral results, it is sufficient to determine the Lagrangian densities of corresponding hypergraphs. These connections add more motivations to determine Lagrangian densities of hypergraphs.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.