Lagrangian densities of 4-uniform matchings and degree stability of extremal hypergraphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Zilong Yan , Yuejian Peng
{"title":"Lagrangian densities of 4-uniform matchings and degree stability of extremal hypergraphs","authors":"Zilong Yan ,&nbsp;Yuejian Peng","doi":"10.1016/j.disc.2024.114235","DOIUrl":null,"url":null,"abstract":"<div><p>The Lagrangian density of an <em>r</em>-uniform graph <em>F</em> is <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><mi>sup</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mo>!</mo><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>:</mo><mi>G</mi><mspace></mspace><mi>i</mi><mi>s</mi><mspace></mspace><mi>F</mi><mtext>-</mtext><mi>f</mi><mi>r</mi><mi>e</mi><mi>e</mi><mo>}</mo></math></span>, where <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the Lagrangian of an <em>r</em>-uniform graph <em>G</em>. Hypergraph Lagrangian has been a helpful tool in extremal combinatorics. Let <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote the <em>r</em>-uniform matching with size <em>t</em>. The well-known Erdős Matching conjecture proposed that the Turán number of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>e</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mi>r</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>,</mo><mi>e</mi><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo><mo>}</mo></math></span>, where <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mi>r</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is the complete <em>r</em>-graph on <span><math><mi>r</mi><mi>t</mi><mo>−</mo><mn>1</mn></math></span> vertices and <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>r</em>-graph with vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> and with edge set <span><math><mi>E</mi><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo><mo>=</mo><mo>{</mo><mi>e</mi><mo>∈</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>r</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>:</mo><mo>|</mo><mi>e</mi><mo>∩</mo><mo>[</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>]</mo><mo>|</mo><mo>≥</mo><mn>1</mn><mo>}</mo></math></span>. Regarding Lagrangian density of hypergraph matchings, Jiang, Peng and Wu <span><span>[22]</span></span> (Wu <span><span>[34]</span></span> as well) conjectured that the property similar to Erdős Matching Conjecture holds, precisely, they conjectured that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mi>m</mi><mi>a</mi><mi>x</mi><mo>{</mo><mi>r</mi><mo>!</mo><mi>λ</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mi>r</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>,</mo><mi>r</mi><mo>!</mo><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mi>λ</mi><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>(</mo><mi>n</mi><mo>)</mo><mo>}</mo></math></span>. Hefetz and Keevash <span><span>[18]</span></span> confirmed for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>, Jiang, Peng and Wu <span><span>[22]</span></span> confirmed for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>, Wu, Peng and Chen <span><span>[35]</span></span> confirmed for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>, Bene Watts, Norin and Yepremyan <span><span>[2]</span></span> confirmed for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>4</mn></math></span>, Wu <span><span>[34]</span></span> confirmed for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>. In this paper, we show that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msubsup><mo>)</mo><mo>=</mo><mn>4</mn><mo>!</mo><mi>λ</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>4</mn><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>4</mn></mrow></msubsup><mo>)</mo></math></span> if <span><math><mi>t</mi><mo>≥</mo><mn>4</mn></math></span>, this settles the conjecture for <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>. Our result has also interesting applications. Combining our result and Theorem 1.12 in <span><span>[26]</span></span> by Liu, Mubayi and Reiher, we can obtain the Turán density of the extension of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span> (<span><math><mi>t</mi><mo>≥</mo><mn>4</mn></math></span>) and the degree stability (a stability stronger than the edge stability) of extremal hypergraphs. Combining our result and Theorem 1.4 in <span><span>[24]</span></span> by Keevash, Lenz and Mubayi <span><span>[24]</span></span>, we can also obtain that if <em>G</em> is an <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>-free 4-uniform hypergraph with <em>n</em> vertices, then the <em>α</em>-spectral radius of <em>G</em> is no more than the <em>α</em>-spectral radius of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>4</mn><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>4</mn></mrow></msubsup></math></span> if <span><math><mi>α</mi><mo>&gt;</mo><mn>1</mn></math></span>, <em>n</em> is large enough and <span><math><mi>t</mi><mo>≥</mo><mn>4</mn></math></span>. Indeed, for hypergraphs satisfying the conditions in Theorem 1.12 by Liu, Mubayi and Reiher <span><span>[26]</span></span> or Theorem 1.4 in <span><span>[24]</span></span> by Keevash, Lenz and Mubayi, to obtain the degree stability of corresponding extremal hypergraphs or corresponding <em>α</em>-spectral results, it is sufficient to determine the Lagrangian densities of corresponding hypergraphs. These connections add more motivations to determine Lagrangian densities of hypergraphs.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114235"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003662/pdfft?md5=9242f6e0ae9a52d7a2d53e03f6ceabb7&pid=1-s2.0-S0012365X24003662-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003662","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Lagrangian density of an r-uniform graph F is πλ(F)=sup{r!λ(G):GisF-free}, where λ(G) is the Lagrangian of an r-uniform graph G. Hypergraph Lagrangian has been a helpful tool in extremal combinatorics. Let Mtr denote the r-uniform matching with size t. The well-known Erdős Matching conjecture proposed that the Turán number of Mtr is max{e(Ktr1r),e(St1r(n))}, where Ktr1r is the complete r-graph on rt1 vertices and St1r(n) is the r-graph with vertex set [n] and with edge set E(St1r(n))={e([n]r):|e[t1]|1}. Regarding Lagrangian density of hypergraph matchings, Jiang, Peng and Wu [22] (Wu [34] as well) conjectured that the property similar to Erdős Matching Conjecture holds, precisely, they conjectured that πλ(Mtr)=max{r!λ(Ktr1r),r!limnλ(St1r)(n)}. Hefetz and Keevash [18] confirmed for M23, Jiang, Peng and Wu [22] confirmed for Mt3, Wu, Peng and Chen [35] confirmed for M24, Bene Watts, Norin and Yepremyan [2] confirmed for M2r for r4, Wu [34] confirmed for M34. In this paper, we show that πλ(Mt4)=4!λ(K4t14) if t4, this settles the conjecture for Mt4. Our result has also interesting applications. Combining our result and Theorem 1.12 in [26] by Liu, Mubayi and Reiher, we can obtain the Turán density of the extension of Mt4 (t4) and the degree stability (a stability stronger than the edge stability) of extremal hypergraphs. Combining our result and Theorem 1.4 in [24] by Keevash, Lenz and Mubayi [24], we can also obtain that if G is an Mt4-free 4-uniform hypergraph with n vertices, then the α-spectral radius of G is no more than the α-spectral radius of K4t14 if α>1, n is large enough and t4. Indeed, for hypergraphs satisfying the conditions in Theorem 1.12 by Liu, Mubayi and Reiher [26] or Theorem 1.4 in [24] by Keevash, Lenz and Mubayi, to obtain the degree stability of corresponding extremal hypergraphs or corresponding α-spectral results, it is sufficient to determine the Lagrangian densities of corresponding hypergraphs. These connections add more motivations to determine Lagrangian densities of hypergraphs.

4-Uniform matchings 的拉格朗日密度和极值超图的度稳定性
r-均匀图 F 的拉格朗日密度为 πλ(F)=sup{r!λ(G):GisF-free}, 其中 λ(G) 是 r-均匀图 G 的拉格朗日。让 Mtr 表示大小为 t 的 r-uniform 匹配。著名的厄多斯匹配猜想提出,Mtr 的图兰数为 max{e(Ktr-1r),e(St-1r(n))} ,其中 Ktr-1r 是 rt-1 个顶点上的完整 r 图,St-1r(n) 是具有顶点集 [n] 和边集 E(St-1r(n))={e∈([n]r):|e∩[t-1]|≥1} 的 r 图。关于超图匹配的拉格朗日密度,蒋、彭和吴[22](以及吴[34])猜想与厄尔多斯匹配猜想类似的性质成立,确切地说,他们猜想πλ(Mtr)=max{r!λ(Ktr-1r),r!limn→∞λ(St-1r)(n)}。Hefetz 和 Keevash [18] 证实了 M23,Jiang、Peng 和 Wu [22] 证实了 Mt3,Wu、Peng 和 Chen [35] 证实了 M24,Bene Watts、Norin 和 Yepremyan [2] 证实了 r≥4 时的 M2r,Wu [34] 证实了 M34。在本文中,我们证明了当 t≥4 时,πλ(Mt4)=4!λ(K4t-14),这就解决了对 Mt4 的猜想。我们的结果还有有趣的应用。将我们的结果与 Liu、Mubayi 和 Reiher 在 [26] 中的定理 1.12 结合起来,我们可以得到 Mt4 扩展的图兰密度(t≥4)以及极值超图的度稳定性(比边稳定性更强的稳定性)。结合我们的结果和 Keevash、Lenz 和 Mubayi [24] 在 [24] 中的定理 1.4,我们还可以得到,如果 G 是一个有 n 个顶点的无 Mt4 的 4-Uniform 超图,那么如果 α>1,n 足够大且 t≥4 时,G 的 α 谱半径不超过 K4t-14 的 α 谱半径。事实上,对于满足 Liu、Mubayi 和 Reiher [26] 的定理 1.12 或 Keevash、Lenz 和 Mubayi [24] 的定理 1.4 条件的超图,要获得相应极值超图的度稳定性或相应的 α 谱结果,只需确定相应超图的拉格朗日密度即可。这些联系为确定超图的拉格朗日密度增添了更多的动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信