Model-theoretic properties of nilpotent groups and Lie algebras

IF 0.8 2区 数学 Q2 MATHEMATICS
Christian d'Elbée , Isabel Müller , Nicholas Ramsey , Daoud Siniora
{"title":"Model-theoretic properties of nilpotent groups and Lie algebras","authors":"Christian d'Elbée ,&nbsp;Isabel Müller ,&nbsp;Nicholas Ramsey ,&nbsp;Daoud Siniora","doi":"10.1016/j.jalgebra.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>We give a systematic study of the model theory of generic nilpotent groups and Lie algebras. We show that the Fraïssé limit of 2-nilpotent groups of exponent <em>p</em> studied by Baudisch is 2-dependent and NSOP<sub>1</sub>. We prove that the class of <em>c</em>-nilpotent Lie algebras over an arbitrary field, in a language with predicates for a Lazard series, is closed under free amalgamation. We show that for <span><math><mn>2</mn><mo>&lt;</mo><mi>c</mi></math></span>, the generic <em>c</em>-nilpotent Lie algebra over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is strictly NSOP<sub>4</sub> and <em>c</em>-dependent. Via the Lazard correspondence, we obtain the same result for <em>c</em>-nilpotent groups of exponent <em>p</em>, for an odd prime <span><math><mi>p</mi><mo>&gt;</mo><mi>c</mi></math></span>.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004757","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a systematic study of the model theory of generic nilpotent groups and Lie algebras. We show that the Fraïssé limit of 2-nilpotent groups of exponent p studied by Baudisch is 2-dependent and NSOP1. We prove that the class of c-nilpotent Lie algebras over an arbitrary field, in a language with predicates for a Lazard series, is closed under free amalgamation. We show that for 2<c, the generic c-nilpotent Lie algebra over Fp is strictly NSOP4 and c-dependent. Via the Lazard correspondence, we obtain the same result for c-nilpotent groups of exponent p, for an odd prime p>c.

零能群和李代数的模型理论性质
我们对一般零能群和李代数的模型理论进行了系统研究。我们证明了鲍迪什研究的指数为 p 的 2 无穷群的弗雷泽极限是 2 依赖的和 NSOP1。我们证明,任意域上的 c-nilpotent Lie 后拉扎德数列谓词语言类在自由合并下是封闭的。我们证明,对于 2<c,Fp 上的泛型 c-nilpotent Lie 代数是严格的 NSOP4 和 c-dependent 的。通过拉扎德对应关系,我们得到了对于奇素数 p>c 的指数 p 的 c-nilpotent 群的相同结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信