Proxy small thick subcategories of derived categories

IF 0.8 2区 数学 Q2 MATHEMATICS
Ryo Takahashi
{"title":"Proxy small thick subcategories of derived categories","authors":"Ryo Takahashi","doi":"10.1016/j.jalgebra.2024.08.018","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>R</em> be a commutative noetherian ring. Denote by <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> the bounded derived category of finitely generated <em>R</em>-modules. Extending the notion of a proxy small object of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> in the sense of Dwyer, Greenlees, Iyengar and Pollitz, we introduce the notion of a proxy small thick subcategory of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. When <em>R</em> is a locally dominant ring, we give a complete classification of the proxy small thick subcategories of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> in terms of pairs of specialization-closed subsets of Spec <em>R</em> and Sing <em>R</em>.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004708","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a commutative noetherian ring. Denote by Db(R) the bounded derived category of finitely generated R-modules. Extending the notion of a proxy small object of Db(R) in the sense of Dwyer, Greenlees, Iyengar and Pollitz, we introduce the notion of a proxy small thick subcategory of Db(R). When R is a locally dominant ring, we give a complete classification of the proxy small thick subcategories of Db(R) in terms of pairs of specialization-closed subsets of Spec R and Sing R.

派生类别的代理小粗子类别
设 R 是交换诺特环。用 Db(R) 表示有限生成的 R 模块的有界派生范畴。从 Dwyer、Greenlees、Iyengar 和 Pollitz 的意义上扩展了 Db(R) 的代理小对象的概念,我们引入了 Db(R) 的代理小厚子类的概念。当 R 是局部显环时,我们给出了 Db(R) 的代理小厚子类的完整分类,即 Spec R 和 Sing R 的成对特化封闭子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信