Enhanced electrical performance and stability of solution-processed oxide semiconductor thin-film transistors via an incorporation of deionized water oxidizer

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xuan Zhang , Narendra Naik Mude , Sung Woon Cho
{"title":"Enhanced electrical performance and stability of solution-processed oxide semiconductor thin-film transistors via an incorporation of deionized water oxidizer","authors":"Xuan Zhang ,&nbsp;Narendra Naik Mude ,&nbsp;Sung Woon Cho","doi":"10.1016/j.cap.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>Solution-processed amorphous oxide semiconductor thin films contain poor metal-oxygen-metal (M-O-M) networks and numerous impurities, making it difficult to manufacture high-performance semiconductor devices with excellent stability. In this study, we enhance the electrical performance and device stability of solution-processed oxide thin-film transistors (TFTs) by incorporating water molecular oxidants. In solution, a water molecule can be easily incorporated by adding deionized water (DW) to the precursor solution. The DW-incorporated precursor solutions induced the production of oxide semiconductor thin films with improved M-O-M networks and fewer defect states. Therefore, compared to conventional case, the DW-incorporated indium zinc oxide (InZnO) TFT showed improved device performances and significantly reduced changes of threshold voltage under positive gate bias stress and negative gate bias/illumination stress conditions. This approach of incorporating DW into the precursor solutions provides a promising route for fabricating high-quality amorphous semiconductor films and transistor devices.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"68 ","pages":"Pages 78-84"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1567173924002001/pdfft?md5=01b99b5681aa5f2e5b6582d86f0fb0cf&pid=1-s2.0-S1567173924002001-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002001","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solution-processed amorphous oxide semiconductor thin films contain poor metal-oxygen-metal (M-O-M) networks and numerous impurities, making it difficult to manufacture high-performance semiconductor devices with excellent stability. In this study, we enhance the electrical performance and device stability of solution-processed oxide thin-film transistors (TFTs) by incorporating water molecular oxidants. In solution, a water molecule can be easily incorporated by adding deionized water (DW) to the precursor solution. The DW-incorporated precursor solutions induced the production of oxide semiconductor thin films with improved M-O-M networks and fewer defect states. Therefore, compared to conventional case, the DW-incorporated indium zinc oxide (InZnO) TFT showed improved device performances and significantly reduced changes of threshold voltage under positive gate bias stress and negative gate bias/illumination stress conditions. This approach of incorporating DW into the precursor solutions provides a promising route for fabricating high-quality amorphous semiconductor films and transistor devices.

Abstract Image

通过加入去离子水氧化剂提高溶液加工氧化物半导体薄膜晶体管的电气性能和稳定性
溶液加工的非晶氧化物半导体薄膜含有较差的金属-氧-金属(M-O-M)网络和大量杂质,因此很难制造出稳定性极佳的高性能半导体器件。在这项研究中,我们通过加入水分子氧化剂,提高了溶液加工氧化物薄膜晶体管(TFT)的电气性能和器件稳定性。在溶液中,通过向前驱体溶液中添加去离子水 (DW),可以很容易地加入水分子。加入 DW 的前驱体溶液能生成具有更好的 M-O-M 网络和更少的缺陷状态的氧化物半导体薄膜。因此,与传统情况相比,掺入 DW 的氧化铟锌 (InZnO) TFT 在正栅极偏压应力和负栅极偏压/照明应力条件下显示出更好的器件性能,并显著降低了阈值电压的变化。这种在前驱体溶液中加入 DW 的方法为制造高质量非晶半导体薄膜和晶体管器件提供了一条很有前景的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信