Asker Jarlöv , Zhiguang Zhu , Weiming Ji , Shubo Gao , Zhiheng Hu , Priyanka Vivegananthan , Yujia Tian , Devesh Raju Kripalani , Haiyang Fan , Hang Li Seet , Changjun Han , Liming Tan , Feng Liu , Mui Ling Sharon Nai , Kun Zhou
{"title":"Recent progress in high-entropy alloys for laser powder bed fusion: Design, processing, microstructure, and performance","authors":"Asker Jarlöv , Zhiguang Zhu , Weiming Ji , Shubo Gao , Zhiheng Hu , Priyanka Vivegananthan , Yujia Tian , Devesh Raju Kripalani , Haiyang Fan , Hang Li Seet , Changjun Han , Liming Tan , Feng Liu , Mui Ling Sharon Nai , Kun Zhou","doi":"10.1016/j.mser.2024.100834","DOIUrl":null,"url":null,"abstract":"<div><p>Laser powder bed fusion (LPBF), as the most commercialized metal additive manufacturing technique, is tantalizing the metallurgical community owing to its capabilities of directly producing highly intricate parts with complex geometries and achieving superior properties compared to those of conventionally manufactured alloys. High-entropy alloys (HEAs) represent a class of novel materials consisting of multiple principal elements in near-equiatomic ratios, revolutionizing the alloy design concept. LPBF has been employed to fabricate HEAs in numerous attempts to improve their outstanding mechanical, physical, and chemical properties. This review systematically compares seven unique classes of LPBF-produced HEAs—the 3d transition metal HEAs, eutectic HEAs, precipitation-strengthened HEAs, refractory HEAs, metastable HEAs, interstitial HEAs, and high-entropy matrix composites—pertaining to their feedstock preparation, printability, microstructure, strengthening mechanisms, material properties, and potential applications. Additionally, the computational modeling of HEAs for LPBF is extensively discussed. This work aims to guide relevant research in the field by systematically reviewing the advancements in the design strategies employed for the successful fabrication of HEAs by LPBF.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100834"},"PeriodicalIF":31.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000640","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Laser powder bed fusion (LPBF), as the most commercialized metal additive manufacturing technique, is tantalizing the metallurgical community owing to its capabilities of directly producing highly intricate parts with complex geometries and achieving superior properties compared to those of conventionally manufactured alloys. High-entropy alloys (HEAs) represent a class of novel materials consisting of multiple principal elements in near-equiatomic ratios, revolutionizing the alloy design concept. LPBF has been employed to fabricate HEAs in numerous attempts to improve their outstanding mechanical, physical, and chemical properties. This review systematically compares seven unique classes of LPBF-produced HEAs—the 3d transition metal HEAs, eutectic HEAs, precipitation-strengthened HEAs, refractory HEAs, metastable HEAs, interstitial HEAs, and high-entropy matrix composites—pertaining to their feedstock preparation, printability, microstructure, strengthening mechanisms, material properties, and potential applications. Additionally, the computational modeling of HEAs for LPBF is extensively discussed. This work aims to guide relevant research in the field by systematically reviewing the advancements in the design strategies employed for the successful fabrication of HEAs by LPBF.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.