Generalized Schröder paths arising from a combinatorial interpretation of generalized Laurent bi-orthogonal polynomials

IF 0.7 3区 数学 Q2 MATHEMATICS
Mawo Ito
{"title":"Generalized Schröder paths arising from a combinatorial interpretation of generalized Laurent bi-orthogonal polynomials","authors":"Mawo Ito","doi":"10.1016/j.disc.2024.114230","DOIUrl":null,"url":null,"abstract":"<div><p>Lattice paths called <em>ℓ</em>-Schröder paths are introduced. They are paths on the upper half-plane consisting of <span><math><mi>ℓ</mi><mo>+</mo><mn>2</mn></math></span> types of steps: <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>ℓ</mi><mo>−</mo><mi>i</mi><mo>)</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>ℓ</mi></math></span>, and <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. Those paths generalize Schröder paths and some variants, such as <em>m</em>-Schröder paths by Yang and Jiang and Motzkin-Schröder paths by Kim and Stanton. We show that <em>ℓ</em>-Schröder paths arise naturally from a combinatorial interpretation of the moments of generalized Laurent bi-orthogonal polynomials introduced by Wang, Chang, and Yue. We also show that some generating functions of non-intersecting <em>ℓ</em>-Schröder paths can be factorized in closed forms.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114230"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003613/pdfft?md5=3d23fab95f47d9c48cf5e308a2091300&pid=1-s2.0-S0012365X24003613-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003613","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice paths called -Schröder paths are introduced. They are paths on the upper half-plane consisting of +2 types of steps: (i,i) for i=0,,, and (1,1). Those paths generalize Schröder paths and some variants, such as m-Schröder paths by Yang and Jiang and Motzkin-Schröder paths by Kim and Stanton. We show that -Schröder paths arise naturally from a combinatorial interpretation of the moments of generalized Laurent bi-orthogonal polynomials introduced by Wang, Chang, and Yue. We also show that some generating functions of non-intersecting -Schröder paths can be factorized in closed forms.

广义劳伦双正交多项式的组合解释所产生的广义施罗德路径
引入了称为 ℓ-Schröder 路径的网格路径。它们是由 ℓ+2 种步长组成的上半平面路径:i=0,...,ℓ时的(i,ℓ-i)和(1,-1)。这些路径概括了施罗德路径和一些变体,例如杨和江的 m-Schröder 路径以及金和斯坦顿的 Motzkin-Schröder 路径。我们证明,ℓ-Schröder 路径自然产生于对王、张和岳提出的广义劳伦特双正交多项式矩的组合解释。我们还证明了一些非相交ℓ-Schröder 路径的生成函数可以用封闭形式因式分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信