Classifying torsionfree classes of the category of coherent sheaves and their Serre subcategories

IF 0.7 2区 数学 Q2 MATHEMATICS
Shunya Saito
{"title":"Classifying torsionfree classes of the category of coherent sheaves and their Serre subcategories","authors":"Shunya Saito","doi":"10.1016/j.jpaa.2024.107799","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we classify several subcategories of the category of coherent sheaves on a divisorial noetherian scheme (e.g. a quasi-projective scheme over a commutative noetherian ring). More precisely, we classify the torsionfree (resp. torsion) classes <em>closed under tensoring with line bundles</em> by the subsets (resp. specialization-closed subsets) of the scheme, which generalizes the classification of torsionfree (resp. torsion) classes of the category of finitely generated modules over a commutative noetherian ring by Takahashi (resp. Stanley–Wang).</p><p>Furthermore, we classify the Serre subcategories of a torsionfree class (in the sense of Quillen's exact categories) by using the above classifications, which gives a certain generalization of Gabriel's classification of Serre subcategories. As explicit applications, we classify the Serre subcategories of the category of maximal pure sheaves, which are a natural generalization of vector bundles for reducible schemes, on a reduced projective curve over a field, and the category of maximal Cohen-Macaulay modules over a one-dimensional Cohen-Macaulay ring.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001968","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we classify several subcategories of the category of coherent sheaves on a divisorial noetherian scheme (e.g. a quasi-projective scheme over a commutative noetherian ring). More precisely, we classify the torsionfree (resp. torsion) classes closed under tensoring with line bundles by the subsets (resp. specialization-closed subsets) of the scheme, which generalizes the classification of torsionfree (resp. torsion) classes of the category of finitely generated modules over a commutative noetherian ring by Takahashi (resp. Stanley–Wang).

Furthermore, we classify the Serre subcategories of a torsionfree class (in the sense of Quillen's exact categories) by using the above classifications, which gives a certain generalization of Gabriel's classification of Serre subcategories. As explicit applications, we classify the Serre subcategories of the category of maximal pure sheaves, which are a natural generalization of vector bundles for reducible schemes, on a reduced projective curve over a field, and the category of maximal Cohen-Macaulay modules over a one-dimensional Cohen-Macaulay ring.

相干剪切范畴的无扭类及其塞尔子范畴的分类
在本文中,我们对可分诺特方案(例如交换诺特环上的准投影方案)上的相干剪切类别的几个子类别进行了分类。更确切地说,我们用方案的子集(或特化封闭子集)来分类在线束张弦下封闭的无扭(或有扭)类,这概括了高桥(Takahashi)(或 Stanley-Wang)对交换诺特环上有限生成模块范畴的无扭(或有扭)类的分类。此外,我们还利用上述分类法对无扭类(在奎伦精确范畴的意义上)的塞雷子范畴进行了分类,这是对加布里埃尔的塞雷子范畴分类法的某种概括。作为明确的应用,我们对最大纯剪范畴的塞雷子范畴和一维科恩-麦考莱环上的最大科恩-麦考莱模块范畴进行了分类,前者是对可还原方案的向量束的自然概括,后者是对一个域上的还原投影曲线的自然概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信