{"title":"Detecting Android malware: A multimodal fusion method with fine-grained feature","authors":"Xun Li , Lei Liu , Yuzhou Liu , Huaxiao Liu","doi":"10.1016/j.inffus.2024.102662","DOIUrl":null,"url":null,"abstract":"<div><p>Context: Recently, many studies have been proposed to address the threat posed by Android malware. However, the continuous evolution of malware poses challenges to the task of representing application features in current detection methods. Objective: This paper introduces a novel Android malware detection approach based on the source code and binary code of software by leveraging large pre-trained models with a fine-grained multimodal fusion strategy. Method: Specifically, the approach treats the source code and binary code as the programming language modality (PM) and machine language modality (MM), respectively. Then, domain-specific knowledge (sensitive API) combined with large pre-trained model is further applied to extract PM features; while the binary code is transformed into RGB images, from which MM features are extracted using a pre-trained image processing model. Furthermore, a fine-grained fusion strategy is implemented using a multi-head self-attention mechanism to effectively capture the correlations among features across different modalities and generate comprehensive features for application malware detection. Results and Conclusion: The detection performance and generalization ability of the proposed method were validated on two experimental datasets. The results demonstrate that our method can accurately distinguish malware, achieving an accuracy of 98.28% and an F1-score of 98.66%. Additionally, it performs well on unseen data, with an accuracy of 92.86% and an F1-score of 94.49%. Meanwhile, ablation experiments confirm the contributions of sensitive API knowledge and the fine-grained multimodal fusion strategy to the success of malware detection.</p></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"114 ","pages":"Article 102662"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524004408","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Context: Recently, many studies have been proposed to address the threat posed by Android malware. However, the continuous evolution of malware poses challenges to the task of representing application features in current detection methods. Objective: This paper introduces a novel Android malware detection approach based on the source code and binary code of software by leveraging large pre-trained models with a fine-grained multimodal fusion strategy. Method: Specifically, the approach treats the source code and binary code as the programming language modality (PM) and machine language modality (MM), respectively. Then, domain-specific knowledge (sensitive API) combined with large pre-trained model is further applied to extract PM features; while the binary code is transformed into RGB images, from which MM features are extracted using a pre-trained image processing model. Furthermore, a fine-grained fusion strategy is implemented using a multi-head self-attention mechanism to effectively capture the correlations among features across different modalities and generate comprehensive features for application malware detection. Results and Conclusion: The detection performance and generalization ability of the proposed method were validated on two experimental datasets. The results demonstrate that our method can accurately distinguish malware, achieving an accuracy of 98.28% and an F1-score of 98.66%. Additionally, it performs well on unseen data, with an accuracy of 92.86% and an F1-score of 94.49%. Meanwhile, ablation experiments confirm the contributions of sensitive API knowledge and the fine-grained multimodal fusion strategy to the success of malware detection.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.