Xinkun Yang , Zhenjie Zhang , Yuanzhi Zhou , Jie Yang
{"title":"Spatio-temporal analysis of Permian-Cretaceous magmatic activities in the Tengchong block: Implications for tectono-magmatic evolution","authors":"Xinkun Yang , Zhenjie Zhang , Yuanzhi Zhou , Jie Yang","doi":"10.1016/j.gsf.2024.101920","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the tectono-magmatic evolution history of the Tengchong block is crucial for elucidating the formation of the Eastern Tethys tectonic domain. However, the correlation and evolution of the Tengchong block with the Sibumasu and Lhasa blocks is controversial during the Permian and Cretaceous. This study explores the information contained within magmatic rocks using big data and spatio-temporal analysis, providing quantitative constraints for the discussion of the tectono-magmatic evolution of the Tengchong block. To more accurately assess true magma activities and reduce errors caused by preservation and sampling processes, we utilized local singularity analysis to obtain the singularity index time-series. Correlation analysis of zircon ages and <em>ε</em><sub>Hf</sub>(<em>t</em>) (correlation coefficient ≥ 0.5) values indicates that the Tengchong block is more similar to the Sibumasu block. Results from time-lagged cross-correlation analysis indicate that the Tengchong block and Sibumasu block exhibit a shorter lag in magmatic activities (3 Myr). Wavelet analysis reveals similar periods of collision-related magmatic activities (57 Myr and 43 Myr). Integrating evidence from paleontology and ophiolite belts, we propose that the Tengchong block co-evolved more closely with the Sibumasu block than with the Lhasa block, suggesting similar tectonic processes during the Early Permian to Early Cretaceous. Approximately 250–236 Ma, in the western Tengchong block, partial melting of the lower crust occurs due to crustal thickening. Around 219–213 Ma and 198–180 Ma, after the Tengchong block collided with the Eurasian continent, the subduction of the Meso-Tethys Ocean commenced. Around 130–111 Ma, the overall tectonic feature was a scissor-like closure of the Meso-Tethys Ocean from north to south.</p></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"15 6","pages":"Article 101920"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674987124001440/pdfft?md5=4a2dc3d2d7eeb3242faed842a9fc0ca5&pid=1-s2.0-S1674987124001440-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987124001440","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the tectono-magmatic evolution history of the Tengchong block is crucial for elucidating the formation of the Eastern Tethys tectonic domain. However, the correlation and evolution of the Tengchong block with the Sibumasu and Lhasa blocks is controversial during the Permian and Cretaceous. This study explores the information contained within magmatic rocks using big data and spatio-temporal analysis, providing quantitative constraints for the discussion of the tectono-magmatic evolution of the Tengchong block. To more accurately assess true magma activities and reduce errors caused by preservation and sampling processes, we utilized local singularity analysis to obtain the singularity index time-series. Correlation analysis of zircon ages and εHf(t) (correlation coefficient ≥ 0.5) values indicates that the Tengchong block is more similar to the Sibumasu block. Results from time-lagged cross-correlation analysis indicate that the Tengchong block and Sibumasu block exhibit a shorter lag in magmatic activities (3 Myr). Wavelet analysis reveals similar periods of collision-related magmatic activities (57 Myr and 43 Myr). Integrating evidence from paleontology and ophiolite belts, we propose that the Tengchong block co-evolved more closely with the Sibumasu block than with the Lhasa block, suggesting similar tectonic processes during the Early Permian to Early Cretaceous. Approximately 250–236 Ma, in the western Tengchong block, partial melting of the lower crust occurs due to crustal thickening. Around 219–213 Ma and 198–180 Ma, after the Tengchong block collided with the Eurasian continent, the subduction of the Meso-Tethys Ocean commenced. Around 130–111 Ma, the overall tectonic feature was a scissor-like closure of the Meso-Tethys Ocean from north to south.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.