{"title":"The PVT limit for gear scuffing assessment","authors":"","doi":"10.1016/j.wear.2024.205557","DOIUrl":null,"url":null,"abstract":"<div><p>The growing interest in gear scuffing research primarily stems from the escalating standards and operation requirements in aero-engines and electric vehicles, particularly under high-temperature, high-speed, and heavy-load conditions. Existing calculation standards for gear scuffing often deviate when evaluating the load-carrying capacity under different rotational speeds or oil temperatures, thus undermining the reliability of gear scuffing assessments. To address this, thirty-five sets of gear scuffing experiments were conducted with different materials, manufacturing processes, and lubrication conditions. A new evaluation method based on the pressure-velocity-temperature (<em>PVT</em>) limit was proposed for assessing gear scuffing resistance. Using a non-dominated genetic algorithm, exponent coefficients for the contact pressure <em>P</em>, sliding velocity <em>V</em>, and lubricant temperature <em>T</em> were determined. The results demonstrated that the proposed <em>PVT</em> limit effectively evaluates gear scuffing resistance across various conditions. The <em>PVT</em> limits across different operating scenarios, under the same material, manufacturing process, and lubrication conditions, showed a maximum deviation of 6.6%. Conversely, the scuffing temperatures calculated using ISO 6336-20-2017 and AGMA 925-A03-2003 standards deviate from experimental results by up to 36.7% and 32.8%, respectively. Further application of the <em>PVT</em> limit to an aero-engine accessory gearbox confirmed the practical applicability of the proposed method.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824003223","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The growing interest in gear scuffing research primarily stems from the escalating standards and operation requirements in aero-engines and electric vehicles, particularly under high-temperature, high-speed, and heavy-load conditions. Existing calculation standards for gear scuffing often deviate when evaluating the load-carrying capacity under different rotational speeds or oil temperatures, thus undermining the reliability of gear scuffing assessments. To address this, thirty-five sets of gear scuffing experiments were conducted with different materials, manufacturing processes, and lubrication conditions. A new evaluation method based on the pressure-velocity-temperature (PVT) limit was proposed for assessing gear scuffing resistance. Using a non-dominated genetic algorithm, exponent coefficients for the contact pressure P, sliding velocity V, and lubricant temperature T were determined. The results demonstrated that the proposed PVT limit effectively evaluates gear scuffing resistance across various conditions. The PVT limits across different operating scenarios, under the same material, manufacturing process, and lubrication conditions, showed a maximum deviation of 6.6%. Conversely, the scuffing temperatures calculated using ISO 6336-20-2017 and AGMA 925-A03-2003 standards deviate from experimental results by up to 36.7% and 32.8%, respectively. Further application of the PVT limit to an aero-engine accessory gearbox confirmed the practical applicability of the proposed method.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.