On Bh[1]-sets which are asymptotic bases of order 2h

Pub Date : 2024-08-20 DOI:10.1016/j.jnt.2024.07.006
Sándor Z. Kiss , Csaba Sándor
{"title":"On Bh[1]-sets which are asymptotic bases of order 2h","authors":"Sándor Z. Kiss ,&nbsp;Csaba Sándor","doi":"10.1016/j.jnt.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>h</mi><mo>,</mo><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> be integers. A set <em>A</em> of positive integers is called asymptotic basis of order <em>k</em> if every large enough positive integer can be written as the sum of <em>k</em> terms from <em>A</em>. A set of positive integers <em>A</em> is said to be a <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>[</mo><mi>g</mi><mo>]</mo></math></span>-set if every positive integer can be written as the sum of <em>h</em> terms from <em>A</em> at most <em>g</em> different ways. In this paper we prove the existence of <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>[</mo><mn>1</mn><mo>]</mo></math></span> sets which are asymptotic bases of order 2<em>h</em> by using probabilistic methods.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X2400177X/pdfft?md5=312356ef445f315e287739fcb2d6b0f7&pid=1-s2.0-S0022314X2400177X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X2400177X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let h,k2 be integers. A set A of positive integers is called asymptotic basis of order k if every large enough positive integer can be written as the sum of k terms from A. A set of positive integers A is said to be a Bh[g]-set if every positive integer can be written as the sum of h terms from A at most g different ways. In this paper we prove the existence of Bh[1] sets which are asymptotic bases of order 2h by using probabilistic methods.

分享
查看原文
关于作为 2h 阶渐近基的 Bh[1]-set
设 h,k≥2 为整数。如果每一个足够大的正整数都可以写成来自 A 的 k 项之和,那么正整数集合 A 称为 k 阶渐近基。在本文中,我们用概率方法证明了作为 2h 阶渐近基的 Bh[1] 集的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信