Construction of a Z-scheme heterojunction based on two-dimensional Janus materials XWSiN2 (X=S; Se; Te) for effective photocatalytic water splitting by DFT

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yingchao Wang , Yi Wang , Tengteng Chen , Lei Li , Guang Wang , Zhengli Zhang , Zhao Ding , Xiang Guo , Zijiang Luo , Xuefei Liu
{"title":"Construction of a Z-scheme heterojunction based on two-dimensional Janus materials XWSiN2 (X=S; Se; Te) for effective photocatalytic water splitting by DFT","authors":"Yingchao Wang ,&nbsp;Yi Wang ,&nbsp;Tengteng Chen ,&nbsp;Lei Li ,&nbsp;Guang Wang ,&nbsp;Zhengli Zhang ,&nbsp;Zhao Ding ,&nbsp;Xiang Guo ,&nbsp;Zijiang Luo ,&nbsp;Xuefei Liu","doi":"10.1016/j.surfin.2024.105079","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalysts play an important role in solving energy problems, and Z-scheme heterojunctions have garnered significant interest due to their ability to efficiently separate photogenerated carriers and improve redox capacity. In this work, we construct a Z-scheme heterojunction by substituting Se and Te for S atoms in the SWSiN<sub>2</sub> bilayer. The findings demonstrate that they have high kinetic stability, and the construction of heterojunctions can narrow the bandgap, effectively improving light absorption. The existence of the built-in electric field can be explained by studying the charge density difference, which breaks through the band gap limitation in water photocatalytic splitting. Their photocatalytic characteristics with and without strain are described in depth, with the spectroscopic limited maximum efficiency (SLME) of TeWSiN<sub>2</sub>/SWSiN<sub>2</sub> surpassing 30 % under no strain. With tensile strain, SeWSiN<sub>2</sub>/SWSiN<sub>2</sub> energy bands rise, but TeWSiN<sub>2</sub>/SWSiN<sub>2</sub> energy bands decrease. Meanwhile, the band edge arrangement of XWSiN<sub>2</sub>/SWSiN<sub>2</sub> (X=Se; Te) becomes smaller with increasing strain. The spectral finite maximum efficiency of SeWSiN<sub>2</sub>/SWSiN<sub>2</sub> increases from 12 % to 27 % and shows good light absorption (<em>η</em><sub>STH</sub> = 10.60 % for SeWSiN<sub>2</sub>/SWSiN<sub>2</sub>, <em>η</em><sub>STH</sub> = 14.17 % for TeWSiN<sub>2</sub>/SWSiN<sub>2</sub>) and carrier utilization.</p></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024012355","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalysts play an important role in solving energy problems, and Z-scheme heterojunctions have garnered significant interest due to their ability to efficiently separate photogenerated carriers and improve redox capacity. In this work, we construct a Z-scheme heterojunction by substituting Se and Te for S atoms in the SWSiN2 bilayer. The findings demonstrate that they have high kinetic stability, and the construction of heterojunctions can narrow the bandgap, effectively improving light absorption. The existence of the built-in electric field can be explained by studying the charge density difference, which breaks through the band gap limitation in water photocatalytic splitting. Their photocatalytic characteristics with and without strain are described in depth, with the spectroscopic limited maximum efficiency (SLME) of TeWSiN2/SWSiN2 surpassing 30 % under no strain. With tensile strain, SeWSiN2/SWSiN2 energy bands rise, but TeWSiN2/SWSiN2 energy bands decrease. Meanwhile, the band edge arrangement of XWSiN2/SWSiN2 (X=Se; Te) becomes smaller with increasing strain. The spectral finite maximum efficiency of SeWSiN2/SWSiN2 increases from 12 % to 27 % and shows good light absorption (ηSTH = 10.60 % for SeWSiN2/SWSiN2, ηSTH = 14.17 % for TeWSiN2/SWSiN2) and carrier utilization.

Abstract Image

通过 DFT 构建基于二维 Janus 材料 XWSiN2(X=S;Se;Te)的 Z 型异质结,实现有效的光催化水分离
光催化剂在解决能源问题方面发挥着重要作用,而 Z 型异质结因其能够有效分离光生载流子并提高氧化还原能力而备受关注。在这项研究中,我们通过在 SWSiN2 双层中用 Se 和 Te 原子取代 S 原子,构建了 Z 型异质结。研究结果表明,它们具有很高的动力学稳定性,异质结的构建可以缩小带隙,有效改善光吸收。内置电场的存在可以通过研究电荷密度差来解释,电荷密度差突破了水光催化分裂的带隙限制。在无应变情况下,TeWSiN2/SWSiN2 的光谱限制最高效率(SLME)超过 30%。拉伸应变时,SeWSiN2/SWSiN2 能带上升,但 TeWSiN2/SWSiN2 能带下降。同时,XWSiN2/SWSiN2(X=Se;Te)的能带边缘排列随着应变的增加而变小。SeWSiN2/SWSiN2 的光谱有限最大效率从 12% 提高到 27%,并显示出良好的光吸收(SeWSiN2/SWSiN2 的 ηSTH = 10.60%,TeWSiN2/SWSiN2 的 ηSTH = 14.17%)和载流子利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信