Non-Fickian transport processes accelerate the movement of PFOS in unsaturated media: An experimental and modelling study

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
John F. Stults , Christopher P. Higgins , Tissa H. Illangasekare , Kamini Singha
{"title":"Non-Fickian transport processes accelerate the movement of PFOS in unsaturated media: An experimental and modelling study","authors":"John F. Stults ,&nbsp;Christopher P. Higgins ,&nbsp;Tissa H. Illangasekare ,&nbsp;Kamini Singha","doi":"10.1016/j.jconhyd.2024.104424","DOIUrl":null,"url":null,"abstract":"<div><p>The transport of <em>per</em>- and polyfluoroalkyl substances (PFASs) through unsaturated source-zone soils is a critical yet poorly understood aspect of their environmental behavior. To date, most experimental studies have only focused on the equilibrium or non-equilibrium partitioning of PFASs to the air-water interface, or solid-phase based equilibrium or non-equilibrium transport. Currently, there are discrepancies between air-water interfacial partitioning (<em>K</em><sub><em>ia</em></sub>) results measured using a drainage-based column method (which supports a Langmuir isotherm) when compared to measurements from alternative experimental methods (which support a Freundlich isotherm). We hypothesize that this discrepancy is the result of non-Fickian transport conditions developing during column tests using the drainage method, which reduces the magnitude of the apparent <em>K</em><sub><em>ia</em></sub> (<em>K</em><sub><em>ia,app</em></sub>) when estimated using the retardation factor correlation from breakthrough curve experiments. To test the validity of this hypothesis, the drainage method was implemented using PFOS in a sand column and compared with prior data collected using a quasi-saturated column method. Results demonstrate that the apparent <em>K</em><sub><em>ia</em></sub> was reduced by 3 to 123-fold, resulting in up to 123-fold faster breakthrough of PFOS than predicted with the assumption of equilibrium adsorption to the air-water interface. A novel mobile-immobile model (MIM) of PFAS fate and transport was developed, incorporating a term for anomalously adsorbed solute in the mobile zone to explain highly anomalous data. The modelling results using a modified HYDRUS-1D software show that anomalous air-water interfacial adsorption and/or flowpath channelization are plausible mechanisms for accelerated transport of PFOS and support the application of a Freundlich isotherm for PFOS. Overall, non-Fickian transport mechanisms demonstrate the potential to accelerate PFOS transport through the vadose zone by up to a factor of 123 under specific circumstances. This work demonstrates the assumption of equilibrium adsorption to air-water interfaces, even for homogeneous laboratory experiments, is not necessarily valid.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224001281","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The transport of per- and polyfluoroalkyl substances (PFASs) through unsaturated source-zone soils is a critical yet poorly understood aspect of their environmental behavior. To date, most experimental studies have only focused on the equilibrium or non-equilibrium partitioning of PFASs to the air-water interface, or solid-phase based equilibrium or non-equilibrium transport. Currently, there are discrepancies between air-water interfacial partitioning (Kia) results measured using a drainage-based column method (which supports a Langmuir isotherm) when compared to measurements from alternative experimental methods (which support a Freundlich isotherm). We hypothesize that this discrepancy is the result of non-Fickian transport conditions developing during column tests using the drainage method, which reduces the magnitude of the apparent Kia (Kia,app) when estimated using the retardation factor correlation from breakthrough curve experiments. To test the validity of this hypothesis, the drainage method was implemented using PFOS in a sand column and compared with prior data collected using a quasi-saturated column method. Results demonstrate that the apparent Kia was reduced by 3 to 123-fold, resulting in up to 123-fold faster breakthrough of PFOS than predicted with the assumption of equilibrium adsorption to the air-water interface. A novel mobile-immobile model (MIM) of PFAS fate and transport was developed, incorporating a term for anomalously adsorbed solute in the mobile zone to explain highly anomalous data. The modelling results using a modified HYDRUS-1D software show that anomalous air-water interfacial adsorption and/or flowpath channelization are plausible mechanisms for accelerated transport of PFOS and support the application of a Freundlich isotherm for PFOS. Overall, non-Fickian transport mechanisms demonstrate the potential to accelerate PFOS transport through the vadose zone by up to a factor of 123 under specific circumstances. This work demonstrates the assumption of equilibrium adsorption to air-water interfaces, even for homogeneous laboratory experiments, is not necessarily valid.

非费克式迁移过程加速了全氟辛烷磺酸在非饱和介质中的移动:实验和建模研究
全氟烷基和多氟烷基物质(PFASs)在非饱和源区土壤中的迁移是其环境行为的一个重要方面,但人们对其了解甚少。迄今为止,大多数实验研究仅关注 PFAS 在空气-水界面的平衡或非平衡分配,或基于固相的平衡或非平衡迁移。目前,使用排水柱法(支持朗穆尔等温线)测得的空气-水界面分配 (Kia) 结果与使用其他实验方法(支持弗伦德里希等温线)测得的结果之间存在差异。我们假设这种差异是由于在使用排水法进行色谱柱测试时出现了非菲克迁移条件,从而降低了使用突破曲线实验中的延迟因子相关性估算的表观 Kia (Kia,app) 的大小。为了验证这一假设的正确性,我们使用砂柱中的全氟辛烷磺酸实施了排水法,并与之前使用准饱和柱法收集的数据进行了比较。结果表明,表观基亚值降低了 3 到 123 倍,导致全氟辛烷磺酸的突破速度比空气-水界面平衡吸附假设预测的速度快了 123 倍。针对全氟辛烷磺酸的归宿和迁移开发了一种新的移动-非移动模型(MIM),其中包含一个移动区异常吸附溶质项,以解释高度异常的数据。使用修改后的 HYDRUS-1D 软件进行建模的结果表明,异常的空气-水界面吸附和/或流径渠化是全氟辛烷磺酸加速迁移的合理机制,并支持对全氟辛烷磺酸应用弗伦德里希等温线。总体而言,非费克利希迁移机制表明,在特定情况下,全氟辛烷磺酸通过粘滞带的迁移速度有可能加快达 123 倍。这项研究表明,空气-水界面的平衡吸附假设并不一定有效,即使在实验室的均匀实验中也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信