Stable generalized finite element for two-dimensional and three-dimensional non-homogeneous interface problems

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiajun Li, Ying Jiang
{"title":"Stable generalized finite element for two-dimensional and three-dimensional non-homogeneous interface problems","authors":"Jiajun Li,&nbsp;Ying Jiang","doi":"10.1016/j.amc.2024.129056","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a Stable Generalized Finite Element Method (SGFEM) to address non-homogeneous elliptic interface problems with discontinuous coefficients. Our approach utilizes the homogenization method to transform non-homogeneous interface conditions into homogeneous ones, thereby facilitating the application of the SGFEM. Specifically, we construct functions that satisfy the jump conditions, streamlining the problem-solving process. In the SGFEM, enrichment functions are used to efficiently construct these specialized functions, reducing the computational demands of the homogenization method. Notably, this method involves only calculations of additional right-hand terms near the interface, which require significantly less computation compared to the calculation of the stiffness matrix, thus avoiding any alterations to the stiffness matrix and preserving the stability and robustness of the SGFEM. We apply our method in both two-dimensional and three-dimensional scenarios, employing distinct strategies for each. In the 2D examples, the displacement homogenization method simplifies the implementation by addressing only the displacement jumps, thereby reducing the computational load. In the 3D examples, the synchronous homogenization method further simplifies numerical implementation by eliminating surface integrals on the interface. Through error analysis and numerical experiments, we demonstrate the efficiency and optimal convergence of our proposed method.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005174","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a Stable Generalized Finite Element Method (SGFEM) to address non-homogeneous elliptic interface problems with discontinuous coefficients. Our approach utilizes the homogenization method to transform non-homogeneous interface conditions into homogeneous ones, thereby facilitating the application of the SGFEM. Specifically, we construct functions that satisfy the jump conditions, streamlining the problem-solving process. In the SGFEM, enrichment functions are used to efficiently construct these specialized functions, reducing the computational demands of the homogenization method. Notably, this method involves only calculations of additional right-hand terms near the interface, which require significantly less computation compared to the calculation of the stiffness matrix, thus avoiding any alterations to the stiffness matrix and preserving the stability and robustness of the SGFEM. We apply our method in both two-dimensional and three-dimensional scenarios, employing distinct strategies for each. In the 2D examples, the displacement homogenization method simplifies the implementation by addressing only the displacement jumps, thereby reducing the computational load. In the 3D examples, the synchronous homogenization method further simplifies numerical implementation by eliminating surface integrals on the interface. Through error analysis and numerical experiments, we demonstrate the efficiency and optimal convergence of our proposed method.

二维和三维非均质界面问题的稳定广义有限元
在本文中,我们提出了一种稳定广义有限元法(SGFEM)来解决非均质椭圆界面问题,该问题具有不连续系数。我们的方法利用均质化方法将非均质界面条件转化为均质条件,从而促进了 SGFEM 的应用。具体来说,我们构建了满足跃迁条件的函数,从而简化了解决问题的过程。在 SGFEM 中,富集函数被用来有效地构建这些专用函数,从而降低了均质化方法的计算要求。值得注意的是,这种方法只涉及计算界面附近的附加右手项,与计算刚度矩阵相比,计算量大大减少,从而避免了对刚度矩阵的任何改动,保持了 SGFEM 的稳定性和鲁棒性。我们在二维和三维场景中应用了我们的方法,并分别采用了不同的策略。在二维示例中,位移均质化方法只处理位移跃迁,从而简化了实施过程,减少了计算负荷。在三维示例中,同步均质化方法通过消除界面上的表面积分进一步简化了数值计算。通过误差分析和数值实验,我们证明了所提方法的效率和最佳收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信