{"title":"Towards shorter composite 180° refocusing pulses for NMR","authors":"","doi":"10.1016/j.jmr.2024.107758","DOIUrl":null,"url":null,"abstract":"<div><p>Novel composite 180° pulses are designed for use in nuclear magnetic resonance (NMR) and verified experimentally using solution-state <sup>1</sup>H NMR spectroscopy. Rather than being constructed from 180° pulses (as in much recent work), the new composite pulses are constructed from 90° pulses, with the aim of finding sequences that are shorter overall than existing equivalents. The primary (but not exclusive) focus is on composite pulses that are dual compensated – simultaneously broadband with respect to both inhomogeneity of the radiofrequency field and resonance offset – and have antisymmetric phase schemes, such that they can be used to form spin echoes without the introduction of a phase error. In particular, a new antisymmetric dual-compensated refocusing pulse is presented that is constructed from ten 90° pulses, equivalent to just five 180° pulses.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724001423/pdfft?md5=759c2933286a1c53d0fc75bfcb2a382b&pid=1-s2.0-S1090780724001423-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724001423","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Novel composite 180° pulses are designed for use in nuclear magnetic resonance (NMR) and verified experimentally using solution-state 1H NMR spectroscopy. Rather than being constructed from 180° pulses (as in much recent work), the new composite pulses are constructed from 90° pulses, with the aim of finding sequences that are shorter overall than existing equivalents. The primary (but not exclusive) focus is on composite pulses that are dual compensated – simultaneously broadband with respect to both inhomogeneity of the radiofrequency field and resonance offset – and have antisymmetric phase schemes, such that they can be used to form spin echoes without the introduction of a phase error. In particular, a new antisymmetric dual-compensated refocusing pulse is presented that is constructed from ten 90° pulses, equivalent to just five 180° pulses.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.