{"title":"Norm convergence rate for multivariate quadratic polynomials of Wigner matrices","authors":"Jacob Fronk , Torben Krüger , Yuriy Nemish","doi":"10.1016/j.jfa.2024.110647","DOIUrl":null,"url":null,"abstract":"<div><p>We study Hermitian non-commutative quadratic polynomials of multiple independent Wigner matrices. We prove that, with the exception of some specific reducible cases, the limiting spectral density of the polynomials always has a square root growth at its edges and prove an optimal local law around these edges. Combining these two results, we establish that, as the dimension <em>N</em> of the matrices grows to infinity, the operator norm of such polynomials <em>q</em> converges to a deterministic limit with a rate of convergence of <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>2</mn><mo>/</mo><mn>3</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>. Here, the exponent in the rate of convergence is optimal. For the specific reducible cases, we also provide a classification of all possible edge behaviors.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 12","pages":"Article 110647"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003355/pdfft?md5=4e27857829ee38213729e119afe883b6&pid=1-s2.0-S0022123624003355-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003355","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study Hermitian non-commutative quadratic polynomials of multiple independent Wigner matrices. We prove that, with the exception of some specific reducible cases, the limiting spectral density of the polynomials always has a square root growth at its edges and prove an optimal local law around these edges. Combining these two results, we establish that, as the dimension N of the matrices grows to infinity, the operator norm of such polynomials q converges to a deterministic limit with a rate of convergence of . Here, the exponent in the rate of convergence is optimal. For the specific reducible cases, we also provide a classification of all possible edge behaviors.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis