Norm convergence rate for multivariate quadratic polynomials of Wigner matrices

IF 1.7 2区 数学 Q1 MATHEMATICS
Jacob Fronk , Torben Krüger , Yuriy Nemish
{"title":"Norm convergence rate for multivariate quadratic polynomials of Wigner matrices","authors":"Jacob Fronk ,&nbsp;Torben Krüger ,&nbsp;Yuriy Nemish","doi":"10.1016/j.jfa.2024.110647","DOIUrl":null,"url":null,"abstract":"<div><p>We study Hermitian non-commutative quadratic polynomials of multiple independent Wigner matrices. We prove that, with the exception of some specific reducible cases, the limiting spectral density of the polynomials always has a square root growth at its edges and prove an optimal local law around these edges. Combining these two results, we establish that, as the dimension <em>N</em> of the matrices grows to infinity, the operator norm of such polynomials <em>q</em> converges to a deterministic limit with a rate of convergence of <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>2</mn><mo>/</mo><mn>3</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>. Here, the exponent in the rate of convergence is optimal. For the specific reducible cases, we also provide a classification of all possible edge behaviors.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 12","pages":"Article 110647"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003355/pdfft?md5=4e27857829ee38213729e119afe883b6&pid=1-s2.0-S0022123624003355-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003355","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study Hermitian non-commutative quadratic polynomials of multiple independent Wigner matrices. We prove that, with the exception of some specific reducible cases, the limiting spectral density of the polynomials always has a square root growth at its edges and prove an optimal local law around these edges. Combining these two results, we establish that, as the dimension N of the matrices grows to infinity, the operator norm of such polynomials q converges to a deterministic limit with a rate of convergence of N2/3+o(1). Here, the exponent in the rate of convergence is optimal. For the specific reducible cases, we also provide a classification of all possible edge behaviors.

维格纳矩阵多元二次多项式的规范收敛率
我们研究了多个独立维格纳矩阵的赫米提非交换二次多项式。我们证明,除了一些特定的可还原情况外,多项式的极限谱密度在其边缘总是有平方根增长,并证明了这些边缘周围的最优局部规律。结合这两个结果,我们确定,当矩阵的维数 N 增长到无穷大时,此类多项式 q 的算子规范会收敛到一个确定的极限,收敛速率为 N-2/3+o(1)。这里,收敛速率的指数是最优的。对于特定的可还原情况,我们还提供了所有可能的边缘行为分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信