Uniform resolvent estimates and absence of eigenvalues of biharmonic operators with complex potentials

IF 1.7 2区 数学 Q1 MATHEMATICS
Lucrezia Cossetti , Luca Fanelli , David Krejčiřík
{"title":"Uniform resolvent estimates and absence of eigenvalues of biharmonic operators with complex potentials","authors":"Lucrezia Cossetti ,&nbsp;Luca Fanelli ,&nbsp;David Krejčiřík","doi":"10.1016/j.jfa.2024.110646","DOIUrl":null,"url":null,"abstract":"<div><p>We quantify the subcriticality of the bilaplacian in dimensions greater than four by providing explicit repulsivity/smallness conditions on complex additive perturbations under which the spectrum remains stable. Our assumptions cover critical Rellich-type potentials too. As a byproduct we obtain uniform resolvent estimates in weighted spaces. Some of the results are new also in the self-adjoint setting.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 12","pages":"Article 110646"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003343/pdfft?md5=772332e832e0b3b3742e9fe5c59bd027&pid=1-s2.0-S0022123624003343-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003343","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We quantify the subcriticality of the bilaplacian in dimensions greater than four by providing explicit repulsivity/smallness conditions on complex additive perturbations under which the spectrum remains stable. Our assumptions cover critical Rellich-type potentials too. As a byproduct we obtain uniform resolvent estimates in weighted spaces. Some of the results are new also in the self-adjoint setting.

具有复势的双谐算子的均匀解析估计和特征值缺失
我们通过对频谱保持稳定的复杂相加扰动提供明确的排斥性/弱化条件,量化了双拉普拉斯在维数大于四的情况下的次临界性。我们的假设也涵盖临界雷利奇型势能。作为副产品,我们获得了加权空间中的均匀解析估计值。其中一些结果也是自相加环境下的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信