Lucrezia Cossetti , Luca Fanelli , David Krejčiřík
{"title":"Uniform resolvent estimates and absence of eigenvalues of biharmonic operators with complex potentials","authors":"Lucrezia Cossetti , Luca Fanelli , David Krejčiřík","doi":"10.1016/j.jfa.2024.110646","DOIUrl":null,"url":null,"abstract":"<div><p>We quantify the subcriticality of the bilaplacian in dimensions greater than four by providing explicit repulsivity/smallness conditions on complex additive perturbations under which the spectrum remains stable. Our assumptions cover critical Rellich-type potentials too. As a byproduct we obtain uniform resolvent estimates in weighted spaces. Some of the results are new also in the self-adjoint setting.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 12","pages":"Article 110646"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003343/pdfft?md5=772332e832e0b3b3742e9fe5c59bd027&pid=1-s2.0-S0022123624003343-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003343","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We quantify the subcriticality of the bilaplacian in dimensions greater than four by providing explicit repulsivity/smallness conditions on complex additive perturbations under which the spectrum remains stable. Our assumptions cover critical Rellich-type potentials too. As a byproduct we obtain uniform resolvent estimates in weighted spaces. Some of the results are new also in the self-adjoint setting.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis