The Widom–Sobolev formula for discontinuous matrix-valued symbols

IF 1.7 2区 数学 Q1 MATHEMATICS
Leon Bollmann, Peter Müller
{"title":"The Widom–Sobolev formula for discontinuous matrix-valued symbols","authors":"Leon Bollmann,&nbsp;Peter Müller","doi":"10.1016/j.jfa.2024.110651","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the Widom–Sobolev formula for the asymptotic behaviour of truncated Wiener–Hopf operators with discontinuous matrix-valued symbols for three different classes of test functions. The symbols may depend on both position and momentum except when closing the asymptotics for twice differentiable test functions with Hölder singularities. The cut-off domains are allowed to have piecewise differentiable boundaries. In contrast to the case where the symbol is smooth in one variable, the resulting coefficient in the enhanced area law we obtain here remains as explicit for matrix-valued symbols as it is for scalar-valued symbols.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003392/pdfft?md5=8010699661a21471a1a6bd426ef43d6a&pid=1-s2.0-S0022123624003392-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003392","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the Widom–Sobolev formula for the asymptotic behaviour of truncated Wiener–Hopf operators with discontinuous matrix-valued symbols for three different classes of test functions. The symbols may depend on both position and momentum except when closing the asymptotics for twice differentiable test functions with Hölder singularities. The cut-off domains are allowed to have piecewise differentiable boundaries. In contrast to the case where the symbol is smooth in one variable, the resulting coefficient in the enhanced area law we obtain here remains as explicit for matrix-valued symbols as it is for scalar-valued symbols.

不连续矩阵值符号的 Widom-Sobolev 公式
我们证明了具有不连续矩阵值符号的截断维纳-霍普夫算子的渐近行为的 Widom-Sobolev 公式,适用于三类不同的检验函数。符号可以同时取决于位置和动量,除非是在对具有霍尔德奇点的二次微分检验函数进行渐近分析时。允许截断域具有片断可变的边界。与符号在一个变量中是平滑的情况相反,我们在这里得到的增强面积定律中的系数对于矩阵值符号和标量值符号一样明确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信