Asymptotic lifting for completely positive maps

IF 1.7 2区 数学 Q1 MATHEMATICS
Marzieh Forough , Eusebio Gardella , Klaus Thomsen
{"title":"Asymptotic lifting for completely positive maps","authors":"Marzieh Forough ,&nbsp;Eusebio Gardella ,&nbsp;Klaus Thomsen","doi":"10.1016/j.jfa.2024.110655","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>A</em> and <em>B</em> be <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras with <em>A</em> separable, let <em>I</em> be an ideal in <em>B</em>, and let <span><math><mi>ψ</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi><mo>/</mo><mi>I</mi></math></span> be a completely positive contractive linear map. We show that there is a continuous family <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi></math></span>, for <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, of lifts of <em>ψ</em> that are asymptotically linear, asymptotically completely positive and asymptotically contractive. If <em>ψ</em> is of order zero, then <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> can be chosen to have this property asymptotically. If <em>A</em> and <em>B</em> carry continuous actions of a second countable locally compact group <em>G</em> such that <em>I</em> is <em>G</em>-invariant and <em>ψ</em> is equivariant, we show that the family <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> can be chosen to be asymptotically equivariant. If a linear completely positive lift for <em>ψ</em> exists, we can arrange that <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is linear and completely positive for all <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. In the equivariant setting, if <em>A</em>, <em>B</em> and <em>ψ</em> are unital, we show that asymptotically linear unital lifts are only guaranteed to exist if <em>G</em> is amenable. This leads to a new characterization of amenability in terms of the existence of asymptotically equivariant unital sections for quotient maps.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003434/pdfft?md5=65a403e2027f24e6659a35962da123f0&pid=1-s2.0-S0022123624003434-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003434","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let A and B be C-algebras with A separable, let I be an ideal in B, and let ψ:AB/I be a completely positive contractive linear map. We show that there is a continuous family Θt:AB, for t[1,), of lifts of ψ that are asymptotically linear, asymptotically completely positive and asymptotically contractive. If ψ is of order zero, then Θt can be chosen to have this property asymptotically. If A and B carry continuous actions of a second countable locally compact group G such that I is G-invariant and ψ is equivariant, we show that the family Θt can be chosen to be asymptotically equivariant. If a linear completely positive lift for ψ exists, we can arrange that Θt is linear and completely positive for all t[1,). In the equivariant setting, if A, B and ψ are unital, we show that asymptotically linear unital lifts are only guaranteed to exist if G is amenable. This leads to a new characterization of amenability in terms of the existence of asymptotically equivariant unital sections for quotient maps.

完全正映射的渐近提升
设 A 和 B 是 C⁎数组,其中 A 是可分的,设 I 是 B 中的一个理想数,设 ψ:A→B/I 是一个完全正的收缩线性映射。我们证明,对于 t∈[1,∞),ψ 的提升有一个连续族 Θt:A→B,它是渐近线性的、渐近完全正的和渐近收缩的。如果ψ的阶数为零,那么可以选择Θt渐近地具有这一性质。如果 A 和 B 带有第二个可数局部紧凑群 G 的连续作用,且 I 是 G 不变的,ψ 是等变的,那么我们将证明Θt 族可以选择为渐近等变的。如果存在ψ的线性完全正提升,我们可以安排Θt对所有t∈[1,∞)都是线性完全正的。在等差数列中,如果 A、B 和 ψ 是独元的,我们证明只有当 G 是可等差数列时,才能保证存在渐近线性独元提升。这就为商映射的渐近等变单整部分的存在带来了可亲性的新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信