Nikolaos Chalmoukis , Alberto Dayan , Giuseppe Lamberti
{"title":"Random Carleson sequences for the Hardy space on the polydisc and the unit ball","authors":"Nikolaos Chalmoukis , Alberto Dayan , Giuseppe Lamberti","doi":"10.1016/j.jfa.2024.110659","DOIUrl":null,"url":null,"abstract":"<div><p>We study the Kolmogorov <span><math><mn>0</mn><mo>−</mo><mn>1</mn></math></span> law for a random sequence with prescribed radii so that it generates a Carleson measure almost surely, both for the Hardy space on the polydisc and the Hardy space on the unit ball, thus providing improved versions of previous results of the first two authors and of a separate result of Massaneda. In the polydisc, the geometry of such sequences is not well understood, so we proceed by studying the random Gramians generated by random sequences, using tools from the theory of random matrices. Another result we prove, and that is of its own relevance, is the <span><math><mn>0</mn><mo>−</mo><mn>1</mn></math></span> law for a random sequence to be partitioned into <em>M</em> separated sequences with respect to the pseudo-hyperbolic distance, which is used also to describe the random sequences that are interpolating for the Bloch space on the unit disc almost surely.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003471/pdfft?md5=002a3ca282e7fe0e69899ce4b770adcb&pid=1-s2.0-S0022123624003471-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003471","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the Kolmogorov law for a random sequence with prescribed radii so that it generates a Carleson measure almost surely, both for the Hardy space on the polydisc and the Hardy space on the unit ball, thus providing improved versions of previous results of the first two authors and of a separate result of Massaneda. In the polydisc, the geometry of such sequences is not well understood, so we proceed by studying the random Gramians generated by random sequences, using tools from the theory of random matrices. Another result we prove, and that is of its own relevance, is the law for a random sequence to be partitioned into M separated sequences with respect to the pseudo-hyperbolic distance, which is used also to describe the random sequences that are interpolating for the Bloch space on the unit disc almost surely.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis